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Self Introduction

RV T
. NAIST Matsumoto-ken D3 v .
. Like: syntactic/semantic parsing, structured prediction '
. Originally from Osaka Univ. (Foreign Studies) ' ,
. mainly worked on Turkish and Arabic languages @Kuwait 2012

. Spent 2.5 years of my Ph.D period at Bekki-sensel's lab (Ochanomizu
Univ.), and now back In Nara

. Surprised to know everyone is working on |E at the lab (no more parsing)



(lce Breaker?) Arabic Morphology Is
Three Concept Consonant times Syntactic Template

DRS QR?
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T Syntactic Templates

representing concepts deciding syntactic function



(lce Breaker?) Arabic Morphology Is
Three Concept Consonant times Syntactic Template

KTB DRS ARy 7KL JoD ) XaYaZa Xagyizy maXYuuZu

write study read new i Fill XYZ doer  is patient to

oHB HML QBL QLL QRR with ABC XaYYaZa

, go  carry accept few decide ey & afe... Made one do Tna))((Yszza XaYiiZu
' TLB yRRB D SJD | - | adjective
seek élnk er[: head down an(I)aZu place to do

Three consonants

Syntactic Templates

representing concepts deciding syntactic function
TaaliBu RD
KiTaaBy QadRRdaRa student maDRaSa maY 154"
book ,_declde HaaMil u school
KaalilBu QalLiiLu leTaD
K?V-I!-ng][eBa writer few pregnant m%?g{q?eu basement



(lce Breaker?) Arabic Morphology Is
Three Concept Consonant times Syntactic Template

KTB DRS QR? ?KL JDD XaYaZa X aaYiZy MaxXYuuZu

write study read new i Fill XYZ doer  is patient to

oHB HML QBL QLL QRR with ABC XaYYaZa

| B few decide N «f.... made one do Tna))((YYaazza XaYiZu
LT RB D SJD " | adjective
seek \{;,nk er[: head down an(I)aZu place to do

Syntactic Templates

representing concepts deciding syntactic function

Ao .. TaaliB
—-=2-Ra  ‘gudent maDRaSa maleDu

. Sematic languages (Hebrew, Amharic..) { HaaMil u school
icati pLiLu pl’egnant maSJiDu miQyaD
- Implication: recent subword methods {few = "7 — mosg. o~ Pasement

are adequate for these languages? N NN
o . - 3SI_sLm u“.‘ w.n o.:.ua.ll mm ! wu A
- But its syntax is familiar tous  aApyv'| ADP PROPN VERB PRON ADJ NOUN ADP PROPN VERB

. VSO with postposmonal modlﬂersTar b went to the new school In which Hanako studies as well
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What Is Syntactic Theory?

. Provide explanations for phenomena arising from the way words are concatenated
. PP-attachment: "John (saw a girl (with a telescope))"”
« Coordination: "Wendy (ran 19 miles) and (walked 9 miles)"

. control verb, complement, passive/active voice, scope, etc.

. Must be general to cover all languages, while describing language specificities
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. e.g. Universal Dependencies (de Merneffe et al., 2014)
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Combinatory Categorial Grammar

Steedman 2000, Bekki 2010

. Categories with recursive function-like structure

. A small number of derivational rules (less than 10) X/Y argument

return value
- Meta rules (cf. CFG:S — NP VP) X\Y

- Forward/backward application: X — X/Y Y X = Y X\Y

. Forward/backward composition rules: X/Z — X/Y Y/Z
S

/\S\NP
NP
e />S%

NP/N N (S\NP)/(S\NP) (S\NP)/NP NP
a man 1S beating John
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Basic CCG-based Semantic Parsing

NP (S\NP)/NP NP
John likes Mary

eF : NP = F
eF : N = \x = F(x)

eF : (S\NP)/NP = \y x — exist e. F(e)
eF : S\NP = \x — exist e. F(e) & A0(0)

Dictionary

. Imagine tfunctional programming

language (e.qg., Haskell)

\x v = f(x,y): lambda term
john, mary: entity term
true, false: truth term

. Hand-crafted dictionary maps

(word, category) to a lambda term

. Here we use logical formulas

based on event semantics

. There exists an event e, whose
argument O Is john and ...



Basic CCG-based Semantic Parsing

. Imagine tfunctional programming
language (e.qg., Haskell)

\x v = f(x,y): lambda term
S\‘ john, mary: entity term
- T true, false: truth term

Wox Rgexist e. like e & AD x & ALy mary , Hand-crafted dictionary maps

(S}N;)/ND A Mla\xl;)y (word, category) to a lambda term
1KeS

. Here we use logical formulas
based on event semantics

: N = \x F(x)
NeF : (S\NP)/NP = \y x — exist e. F(e)

| . Ihere exists an event e, whose
oF : S\NP = \x — exist e. F(e) & A0(0)

argument O Is john and ...

Dictionary



Basic CCG-based Semantic Parsing

d \X — exist e. like e & A0 x & Al mary

\y X — _exist e. like e & AD x & Al y

(S\N

: N = \x F(x)

D)

likes

°)/N

Dictionary

D)

S\

NeF : (S\NP)/NP = \y x — exist e. F(e)
eF : S\NP = \x — exist e. F(e) & A0(Q)

» NP
- Mary

mary

. Imagine tfunctional programming
language (e.qg., Haskell)

\x v = f(x,y): lambda term
john, mary: entity term
true, false: truth term

. Hand-crafted dictionary maps
(word, category) to a lambda term

. Here we use logical formulas
based on event semantics

. There exists an event e, whose
argument O Is john and ...



Basic CCG-based Semantic Parsing

S . Imagine tfunctional programming
language (e.qg., Haskell)

“\x — exist e. like e § A0 x § A1 mary  \x y = f(x,y): lambda term
S\NP john, mary: entity term

true, false: truth term

\y X . _exist e. like e & AD x & Al y
" (S\NP)/NP

likes

_ MYy . Hand-crafted dictionary maps

Y N P
| Mew (word, category) to a lambda term

. Here we use logical formulas
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Basic CCG-based Semantic Parsing

exist e. like e & A0 john & Al mary . . .
S . Imagine tfunctional programming

language (e.qg., Haskell)

#\x — exist e. like e & A0 x & AL mary  \x y — f(x,y): lambda term
S\\P john, mary: entity term

true, false: truth term

\y X . _exist e. like e & AD x & Al y
" (S\NP)/NP

likes

_ MYy . Hand-crafted dictionary maps

Y N P
| Mew (word, category) to a lambda term

. Here we use logical formulas

LN = \x = F(x) based on event semantics

NeF : (S\NP)/NP = \y x = exist e. F(e)

| . Ihere exists an event e, whose
oF : S\NP = \x — exist e. F(e) & A0(0)

argument O Is john and ...

Dictionary



Semantic Parsing in Real Application

e.g. Mineshima et al., 2015, Abzianidze, 2017

exlst x. man x & exist e. like e & A0 x & Al mary

o R
- = o
r A
e .
P "Nk
X

F, G: entity — truth

P, Q: (entity — truth) — truth

\G — exist x. man x &§ G X \P = P(\x — exist e. like e & A0 x) & Al mary
NP S\NP

\Q = a0\y = (\P = P(\x -

\F G = exiS%. FXx &G x \X 4; man X exist e. like e & AD x)) & Al y) \Eﬁ—é F mary
NP/N N (S\NP)/NP NP
a man likes Mary

| invalid output formula. (e.g., NP is always |

(entity — truth) — truth). |




CCG-based Inference System

Premise (P)
& Hypothesis (H)

4 . )
Syntactic Parsing
\_ /
............. _ S
____CCG Derivations
4 . )
Semantic Parsing
\_ /
.......... I
_Logical Formulas
4 ' )
Theorem Proving
\_ /

________________________________________

(latter half of the talk)

e.g. Mineshima et al,, 2015, Abzianidze, 2017

P: A man hikes. H: A man walks.

NPN N SINP. NP/N N SINP |

A man hikes : A man Walks
B p <L
Jz.man(z) . subj(e, x)

Coq < Theorem tl:

(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->

exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x). COq
Coq < Proof. ccg2lambda. Qed. theorem
prover

result: unknown



m Annotation Criteria for CCG

Q: How do you choose that
structure/category? Is it because
you like that?

A: No, it is designed to optimize
the pertormance of inference
systems built upon it

. e.g. Why are there N and NP?

- syntax semantics

NP roper noun entity
(John) Prop . (John)

N set of entities

(dog) common Nnoun (\X R dog X)



m Annotation Criteria for CCG

\G — exi1st x. young x &§ man x & love mary x & G X

&
NP
Q: How do you choose that
structure/category? Is it because \; ;=5 \X = younng & man x & love_mary X

you like that? NP/N
a

\X — man x & love mary X

A: No, it Is designed to optimize \Fx = VIG“ x &b X
the performance of inference ycng “\ ‘

systems bulilt upon It

“"\F x %one_mary X & F X
~ \x — ‘man x N\N

man \X > ..

(N\N)/(S\NP) . SWP_

loves Mar
who Y

| many adjectives behave |
| like set intersection |

. e.g. Why are there N and NP?

- syntax semantics

NP omer noun entity
(John) Proper hod (John)

N set of entities

(dog) common noun (\X R dog X)

| a relative clause is semantically |
like adjectives (intersective) |




m Annotation Criteria for CCG

\G — exi1st x. young x &§ man x & love mary x & G X

&
NP
Q: How do you choose that
structure/category? Is it because \; ;=5 \X = younng & man x & love_mary X

you like that? NP/N
a

\X — man x & love mary X

A: No, it Is designed to optimize \Fx = VIG“ x &b X
the performance of inference ycng “\ ‘

systems bulilt upon It

\F X %&ove_mary X & F X
~ \x — ‘man x N\N

man \X > ..

(N\N)/(S\NP) . SWP_

loves Mary

. e.9. Why are there N and NP7 |
.9 y are there ana - modify a proper noun

- syntax semantics Y

| s who

NP entity

Proper noun

- ' 1 a relative clause is semantically |
N set of entities NP |

common noun “~.. | like adjectives (intersective) |
9
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Why CCG? and not dependenmes’?[% f'ﬂﬁ

@ Gives elegant explanations for complex phenomena

. leads to better meaning representation
. cf. semantic parsing based on UD (Reddy et al., 2017)

. suffers from control verbs, coordination, etc.

10

Anna wants marry Kristoft

(a) With long-distance dependency.

Xcomp
[@\ mark /—@W

Anna  wants marry Kristoff
\
N nsubj_/

T Q- '

(b) With variable binding.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristofft.



Why CCG’P and not dependenmes?[% f'ﬂﬁ

Anna wants marry Kristoft

. @ QGives elegant explanations for complex phenomena oo lmbloooo

(a) With long-distance dependency.

leads to better meaning representation (e | - I=\Ta=n

Anna  wants marry Kristoff

. cf. semantic parsing based on UD (Reddy et al., 2017) o Q(___rislﬂz],

(b) With variable binding.

. suffers from control verbs, coordination, etc.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristofft.

. @ Collaborate with linguists to address long-tail problems  Fesitive adiectives

A s than B is.

36 (tall(A,8) A —tall(B,3d))

. €.g., comparatives (Haruta et al., 2019)

» There exists a degree 6 of tallness that A satisfies
but B does not.

10



Why CCG’P and not dependenmes?[@n f'ﬂﬁ

Anna wants marry Kristoft

. @ QGives elegant explanations for complex phenomena oo lmbloooo

(a) With long-distance dependency.

. leads to better meaning representation (e | e I=\Ta=n

Anna  wants marry Kristoff

. cf. semantic parsing based on UD (Reddy et al., 2017) o Q(___?S@,

(b) With variable binding.

. suffers from control verbs, coordination, etc.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristofft.

. @ Collaborate with linguists to address long-tail problems Positive adjectives

A s than B is.

Faovsicn Sumien @
e 36 ( tall(A,8) A —tall(B,d) )

. €.g., comparatives (Haruta et al., 2019)

» There exists a degree 6 of tallness that A satisfies
but B does not.

. @ General to cover many languages, giving | .
VIASGE SGLDIE AP i

MER-RERA-DRER

detalled description of language specifities

_10 éu-m



Interesting Model tfor CCG Parsing

. Category-factored Model (Lewis and Steedman, 2014)

. Complex categories almost uniquely determine higher-level structure

. Exactly same form as POS tagging, but models the entire tree!

~ Note: computing arg max p(y | x) Is not trivial (CKY parsing is needed)

py1%) = [ [ pr.lc 1

11

N ,

man

~~w €t Of valid CCG trees

S\NP)/(S\N

is




Interesting Model tfor CCG Parsing

. Category-factored Model (Lewis and Steedman, 2014)

. Complex categories almost uniquely determine higher-level structure

. Exactly same form as POS tagging, but models the entire tree!

~ Note: computing arg max p(y | x) Is not trivial (CKY parsing is needed)

~~w €t Of valid CCG trees

. (Advantage) Easy to compute inside/outside probabillities

. Even upper bounds on these probs

P (y | X) — H p tag(ci ‘ X) ( e

Outside —"

N { /(S\NP)/(S\N
man 4 1S
Inside ="




Eﬁi C i e nt A* Pa rSi n g Klein & Manning, 2003

Shortest Path Problem

initial state f
(1,1) 0.
'PL‘ (2,0) 0.
©,1) 0.
(0,2) 0.9
(3,0) 0.99
> | goalstate  PrigrityQueue(f)

. Searches based onf=g+h

. g: Sum of the cost to the node

. h: Estimate on the cost to the goal

. €.9. Manhattan distance

12



Eﬁi C i e nt A* Pa rSi n g Klein & Manning, 2003

Shortest Path Problem A*-based Chart Parsing
(1,1) N3, 5 -
-8 (2,0) o N1 A o
01) 01 | chant S\N/Nz2 0.
(02) 09 N&{ Naa 0.9
(3,0) 0.99 E ’ N4,5 S\N2,2 0.99
PR
s | PriorityQueue(f) | N/N3.3"N/Naa” Nss PriorityQueue(f
. Searches based on f=g+h . Searches based on f=g+#

. 2: Sum of the cost to the node s . g Inside probability

. h: Estimate on the cost to the goal . h: Upper bound on outside probability

- €.9. Manhattan distance Z maXpmg(c = C\X) / WP

Very efficient while guaranteeing the optlmallty of the solution! NP/N N (S\NP)/(S\NP) SNP/NP NP

15 a man is beating John



However..

- Modeling Japanese sentence structures with this model is not so reliable

. |t assigns the exactly same probabilities to the structures right 2
N
. The kind of ambiguities that must be addressed in parsing! N/N/\
. & Dilemma: s& N S\N
E B-oft AL—% BN
. Want to extend the model to achieve higher expressivity -
. Extension with TreeLSTMs (Lee et al., 20106) S
- Do not want to lose the original merits N/N/\
|
. o S/S S N S\N
. Efficiency and optimality guarantee EH Bofc HlL—% BRIk

13



My Previous Contribution

. Category and Dependency-factored Model (Yoshikawa et al., 201 7)

. Model the higher-level structure through dependency edges

Py 1%) = [ [ Pruelci1) x | | Paey(i 1 %)

. The probability iIs decomposable: A* parsing is available!

. The all guantities required in A* search can be pre-computed

. Efficiency and optimality guarantee

S

) > P ( N\ h OOT)
3

A /lN A \ lh4

S/S S N S\N S/S S N S\N

fE BE-o7c AlL—% BgRS HE BEo/c hHL—% BARS

14




Calculating p,,, and p,,,

S NP N S/S-

B111near

CCCCC

Iy

CCCCC

B1ff1ne

N

I's

l______-l?ta%zl______-ljéhﬂn

xl X2 X3 X4

ry

N/N3,3"N/Na.4

i

_Node  f
(1,1) 0.1
(20) 0.1
(0,1) 0.1
(02) 09
(3,00 0.99

X

N4,5pr,cr|tyQueue(f)
A X
N5,5

&

™

N

Q)

N

NPT
NP/N

a

man

“”““S\NP

. bILSTM-based vectors: r;

. Best-performing dependency parsing

method (Dozat et al., 2017) 1s utilized:

Biaffine layer to model dependencies

&\ T T
pdep(xj Xi) X I er_l_ri a

. Bilinear layer to model categories

ptag(ci — C) X I TW L _head

S\NP)/(S\NP) (STNP)/NP NP

is

beating John



Labeled F1

Experiments on English CCGbank

91

N
N

21.9
90.5 S
Category-factored TreeLSTM D
90 16.5
model > 14.5
. -
> v 5 1 9.3
Ris)
O
- :
87 P 0
Lewis+, 2010 Lee et al, 2016 Ours Ours + ELMo Lewis+, 2016 Lee et al, 2016 ours

. English CCGbank (Hockenmeier and Steedman, 2007)
. the same set of sentences as WSJ
. Accuracy: the proposed method achieved the best score

. Speed: It Is more efficient than the powerful TreeLSTM-based method

16



Experiments on Japanese CCGbank

B Category B Dependency

100

95 Q3.7 930 94.1
3 - 91 5
3 87.5
< g5

1.5
30 M.
Lewis et al., 2016 Noji et al, 2016 Ours

. Japanese CCGbank (Uematsu et al., 201 3)
. the same set as Kyoto University Text Corpus (Mainichi hewspaper)
. (Noji et al,, 20106): Shift-reduce CCG parser with a linear model

. For Japanese language, modeling the level higher than per-terminal is crucial

17



Summary so far

| Introduced CCG and my previous work on Its parsing algorithm
CCG provides elegant explanations for linguistic phenomena for various languages
| proposed an efficient CCG parsing model, utilizing dependencies within a CCG tree

. The proposed method is especially effective for the Japanese language

Next, I'd like to talk about an inference system based on CCG, for solving

Recognizing Textual Inference task
- ~ pip i1nstall allennlp depccg

- ~ allennlp train --include-package depccg.models.my_allennlp -s results supertagger.jsonnet

- ~ echo "CCG parsing is fun" | depccg_en --model results/model.tar.gz --format deriv --silent
1

ID=1, log probability=-0.2000395804643631

CCG parsing 1S fun

(S[ACLT\NP)/NP N $ pip install depccg
$ depccg_en download




Part Two:
Combining Axiom Injection and Knowledge
Base Completion for Efficient Natural
Language Inference

Masashi Yoshikawz?, Koji I\/I'neshimainroshi Noji,' Daisuke Bekki*
¢ Nara Institute of Science and Technology o9
* Ochanomizu University : ® @
IN /A\" S_"_® v Artificial Intelligence Research Center, AIST " Advanced ndustrial Soience
*oresented at AAAI-33 Ochanomizu and E;g;-/ogy

University



Recognizing lTextual Entallment

a.k.a. Natural Language Inference

Premise(s)
P1: Clients at the demonstration were all Hypothesis

impressed by the system’s performance. H: Smith was impressed by the
system’s performance.
P2: Smith was a client at the demonstration.

| {entailment, contradiction, unknown} }

. A testbed to evaluate It a machine can reason as we do
- lexical, logical, syntactic phenomena, etc.
. Elemental technology for improving other NLP tasks

- Question answering, reading comprehension, etc.

20



CC92Iambda (Mineshima et al., 2015)

——————————————————————————————————

Premise (P)
& Hypothesis (H)

4 . )
Syntactic Parsing
\_ /
............. I
____CCG Derivations _
4 . )
Semantic Parsing
\_ /
.......... N
' Logical Formulas
P ' ___________ )
Theorem Proving
\_ /

________________________________________

P: A man hikes. H: A man walks.
_________ GS QS

NP/N N SINP; NP/N N SINP

A man hikes: | A man walks
_ = L
Jr.man(x) A Je.hike(e) A subj(e,x)

Coq < Theorem tl:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).

Coq < Proof. ccg2lambda. OQed.

result: unknown

Coqg
theorem
prover



ch2Iambda (Mineshima et al., 2015)

——————————————————————————————————

: Premise (P) ; P: A man hikes. H: A man walks.
. &Hypothesis (H) N < = e < =
""""""""" I s S . S i
4 ) ! : !
Syntactic Parsin 5 NP/\ i NP /\
. y 5 y TN N i
. T NP/N N SINPi NP/N N SINP
____CCG Derivations A man hikes! | A man walks
. L R RREEELE LR B L R RS
~ Semantic Parsing | 3z man(z) A Je.hike(e) A subj(e, z)
R _ : Jr.man(xz) A dJe.walk(e) A subj(e,x)
. Logical Formulas !
e s \ <
Coq_< Theorem t}: | | | |
Theorem Proving | 5o oottty "\ Gonises o & mvont, waik e I\ s ex). Coq
. ‘ < Coq < Proof. ccg2lambda. OQed. theorem
o ; —~— prover

result: unknown

________________________________________

= Unsupervised

_= Captures linguistic phenomena
- 83.0 % accuracy in SICK



CCQZlambda (Mineshima et al., 2015)

——————————————————————————————————

: Premise (P) ; P: A man hikes. H: A man walks.
i & Hypothesis (H) i R < = R - =
""""""""" i s S - S i
4 ) ! : !
Syntactic Parsin 5 NP/\ - NP /\
. y 5 y TN N i
T T NP/N N SINP{ NP/N N  SINP
____CCG Derivations . A man hikes! | A man walks
. [ R e
~ Semantic Parsing | 3z man(z) A Je.hike(e) A subj(e, z)
R _ : Jz.man(z) A Je.walk(e) A subj(e,z)
' Logical Formulas R
o Leee e \ -
Coq_< Theorem t}: | | | |
Theorem Proving | 0t Toriity Tmnn s I\ axiets o & peont, watk e I\ oubs e x). Coq
. ‘ < Coq < Proof. ccg2lambda. OQed. theorem
"""""""""""""""""""" —~— prover

result: unknown

H *) How to handle external knowledge?
~= Unsupervised : :
S €.g. Vx. hike(x) — walk(x)
= Captures Ilngmstlc_: phenomena  _ [Jse WordNet as axioms blows up
- 83.6 % accuracy in SICK the search space of theorem proving!



AdeCthn mechanlsm (Martinez-Gémez et al., 2017)

——————————————————————————————————

: Premise (P) ; P: A man hikes. H: A man walks.
i & Hypothesis (H) i R - = N - =
""""""""" g ; S o S i
4 A | S
Syntactic Parsin 5 NP/\ - VP /\
. y 5 y TN N i
ommooe i — "NP/N N SINP: ' NP/N N SINP
____CCG Derivations . A man hikes! | A man walks
. _ R RREEELE LR R E T PR,
\ Semantic Parsing | Jz.man(z) A Je.hike(e) A subj(e,z)
R _ : Jr.man(z) A de.walk(e) A subj(e,x)
. Logical Formulas !
o LeEe s \ —
Coq_< Theorem t}: | | | _
Theorem Proving | ot ™  Foriils Moo\ onicts o & Foont, watk o I\ oubs e xy . Coq
. ‘ < Coq < Proof. ccg2lambda. OQed. theorem
"""""""""""""""""""" — prover

result: unknown

________________________________________



AdeCthn mechanism (Martinez-Gémez et al., 2017)

—l e LLL“J.L\W} 7\ —le Wu-l-.l.\.\k// /N UL‘-UJ \L/’ W/

< _

4 \ Cog < Theorem tl:
- (exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
Theorem PrOVIng exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e Xx). COq
~ ; < Coq < Proof. cecg2lambda. Qed. theorem
"""""""""""""""""""" G prover
{yes, no, unknown } result: unknown
________________________________________ hi { }
R nike hypernym
Search on KBS g 20, C > Ve.hike(e) — walk(e)
—————————— e bt JO _
:' . : exical datapase 10r cnglis hypernym
New Axioms A
___________ Axioms N
4 \ Cogq < Axiom axl: forall x: Event, hike e -> walk e.
Cogq < Theorem tl:
Theorem PrOVIng (exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) -> COq
~ 4 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e Xx).
_________________ !__________________ Coq < Proof. ccg2lambda. Qed. theorem
- prover

________________________________________

More steps when the 1st theorem proving is unsuccesstul
1. Search KBs (e.g. WordNet) for useful lexical relations
2. Rerun Coqg with additional axioms

result: ves



"AdeCtiOn" meChanism (Martinez-Gomez et al., 201 7)

. Promising approach to handling external knowledge within a logic-based system
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"AdeCtiOn" meChanism (Martinez-Gomez et al., 201 7)

. Promising approach to handling external knowledge within a logic-based system

. (However,) Practical issues:

. We want to add more knowledge to increase the coverage of reasoning

- We want the KBs to be compact for efficient inference & memory usage

. Do not want to run Coqg again and again for real applications &

. |deally, the mechanism should be tightly integrated with the inference for effciency

.~ We solve these issues by:
1. Replacing search on KBs by techniques of "Knowledge Base Completion”

2. Developing "abduction" Coqg plugin

23



1. Extending Abduction Mechanism with KBC

hike

o Knowledge Base Completion: g

2. _ antonym

. A task to complement missing relations hypernym j¢
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1. Extending Abduction Mechanism with KBC

hike
- hypernym

- Knowledge Base Completion: walk

. : . antonym
. A task to complement missing relations hypernym j¢

o
P " ;
Fo.. 3
Loy oy =
&
-
. Q
N

< D e » "
i "
S
4 "N [
[ -
N k.
24
4 3 I —

W, .

. recent huge advancement

antnym
. We propose an abduction mechanism based on KBC: ¥

. If (s,7,0) is missing, use it as axiom if @(s,7,0) > O (threshold)
. ComplEx (Trouillon et al., 2016): ¢(s,r,0) = o(Re({e e, e, ))),Ve & C"

h_Q ~hypernym I Chike |

Chypernym| | —p

O”,ﬁ*'w :
g}"o hypernym

Cwalk | |

24



Extending Abduction Mechanism with KBC

Search on KB KBC

Hand-crafted rules KBC models learn
(e.g. transitive closure of hypernym) accurately

Latent Knowledge
Multi-hop reasoning One dot product

S
ciency takes time (ComplEx)

Adding more knowledge Knowledge from VerbOcean

Scalabllity (Chklovski et al., 2004) are
added for free

harms the search time

hike

hypernym , Chike | |

Chypernym | —

&, hypern

Cwalk | |

25



2. Faster Reasoning with "abduction” Coqg plugin

Coq Interactive Session

subgoal

H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)

exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e Xx)

20
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Coq Interactive Sessi c'ﬁ (man, walk) e

(hike, walk) | |

subgoal | Lexical gap!|
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2. Faster Reasoning with "abduction” Coqg plugin

subgoal

H : exists x :

Entity, man x7%

exists x : Entity, man x /\ (exists e : Event, walk e /\ subjfe x)

t < abduction.

(man, hike)

Lexical gap! |

20
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2. Faster Reasoning with "abduction” Coqg plugin

Construct a list of predicate
pairs from context and goal

Coq Interactive Sessiq’

subgoal | Lexical gap!| (hike, walk) | {

Evaluate all the predicate
pairs using ComplEx

H : exists x : Entity, man x /N (€XI5F5 & T Eveyt, hike e /\ EUbj

exists x : Entity, man x /\ (exists e : Event, walk e /\ subjfe x (ﬂﬁkefpf

t < abduction. Chypernym

H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subjlec—ay
NLaxl : forall x : Event, hike x -> walk x

exists x : Entity, man x /\ (exists e : Event, walk e /\ sub X Filter them by score

VxhlkE(X) Walk(X) hee Them 2 arioms

20



Semantic Parsing

__________ .____________I

" Logical Formulas :

= Efficient and scalable abduction mechanism

Summary so far...

< _ < _

Jr.man(x) A =

Coq < Theorem tl:

L.

e.hike(e) A subj(e,x)
man(x) A Je.walk(e) A subj(e,x)
< _

(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x). (:
Cogq < Proof. ccg2lambda. Qed. OQ

- +abduction
result: yes €hike 7.

Chypernym [_3t A |

.= No need to rerun Coqg Iin abduction

. Our method Is applicable to other logic-based systems
. e.9. Modern Type Theory (Bernandy and Chatzikyriakidis, 2017)

27



Experiments

. SICK RTE dataset (Marelli et al., 2014)

. Evaluation metrices: accuracy and processing time

. ComplEx is trained on logistic loss: »  tlog f(s,r,0) + (1 —t)log(1 — f(s,r,0))
. [he training data is constructed (L(Jsgijg)g)i/z\)/ordNet

. Synonym, antonym, hyponym, hypernyms, etc.

. The trained ComplEx model achieves MRR of 77.68%

P: A flute 1s being played 1n a lovely way by a girl.

i _ entailment
logical lexical

H: 1s playing a flute. phenomena

28



Experimental Results on SICK

- RTE performance (accuracy)
84.0 33.55% 33.55%

82%
81.7
77.0 — e I

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

. Baselines: Search on KB (Martinez-Gomez et al., 2017), NN-based (Nie et al., 201 7)
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no knowledge Search on KB C (Ours)
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Experimental Results on SICK

- RTE performance (accuracy)
840 33.55% 83.55%

| 82%
81.7
77.0

(Nie et al.,, 2017) no knowledqe Search on KB

Achleves the same accuracy, §

improving significantly

. Processing speed (second per a problem) ]
§ from "no knowledge” case §

10.0 9.15
4.03

no knowledge Search on KB Ours

. Baselines: Search on KB (Martinez-Gémez et al., 2017), NNf Our method halves the time i

" {_to process an RTE problem!



Summary of Part Two

. A KBC-based axiom injection for logic-based RTE systems

. Efficient, scalable, and it provides latent knowledge

. abduction tactic for further faster reasoning

. Other topics:
. Adding other KB (VerbOcean) without losing efficiency

. Evaluating learned latent knowledge Iin terms of RTE (LexSICK dataset)

. All the codes, dataset and slides are available:

https://github.com/masashi-y/abduction_kbc

30


https://github.com/masashi-y/abduction_kbc

The performance of ccgZlambda on various datasets

* SICK (Marelli et al., 2014): Accuracy 82,3% o

| passive voice, quantifier |
P: A flute is being played in a lovely way by a girl. lexical semantics '
H: One woman 1is playing a flute

* FraCaS (Cooper et al., 1992): Accuracy 69%

f Quantifier, Plurals, ’1

Smith believed that ITEL had won the contract in 1992. Adjectives, Comoaratlves, f
- Verbs, Attitudes |

P
H: ITEL won the contract in 1992.
P

ITEL won more orders than APCOM did.
H: APCOM won some orders. Adjectives (22 problems): 100%

Comparatives (31): 94% ,
*SNLI (Bowman et al., 2015): No result __Lomparatives (31): 94% |
P: A black race car starts up in front of a crowd of people

H: A man is driving down a lonely road. "a crowd" relates to "lonely”,

| "car starts up" relates to "driving", |



summary

. A CCG-based system has some advantages in handling complex linguistic phenomena
. They reside In the long tail of distribution, and have been the focus of linguistics

. It 1s unlikely that a neural method understands passive voice, though It achieves the similar
accuracy on SICK using 5,000 sents ...

. Difficulties at handling similarities between phrases, which is much easier for neural methods

.. B f id f
. SOMe promising approaches;: (B) o S ]

[be elected president of]

. Learning Entailment Graph (e.g., Hosseini et al., 2018, 2019) \

[ be nominated for presidency of ]

. Vector-based Semantics (e.g., Wijnholds and Sadrzadeh, 201 8)

(John @ subj) ® likes ® (Mary ® obj)

Hosseini et al., Learning Typed Entailment Graphs with Global Soft Constraints, TACL 2018
Hosseini et al., Duality of Link Prediction and Entailment Graph Induction, ACL 2019
Wijnholds and Sadrzadeh, Evaluating Composition Models for Verb Elliptic Sentence Embeddings, NAACL 2019



