
Building Natural Language System
based on Theoretical Linguistics

理論言語学に基づいた自然言語処理システム
@MiCS 2019/10/23

Masashi Yoshikawa (NAIST D3)

Self Introduction
• NAIST Matsumoto-ken D3

• Like: syntactic/semantic parsing, structured prediction

• Originally from Osaka Univ. (Foreign Studies)

• mainly worked on Turkish and Arabic languages

• Spent 2.5 years of my Ph.D period at Bekki-sensei’s lab (Ochanomizu
Univ.), and now back in Nara

• Surprised to know everyone is working on IE at the lab (no more parsing)

2

@Kuwait 2012

(Ice Breaker?) Arabic Morphology is
Three Concept Consonant times Syntactic Template

3

DRS
study

QRʔ
read ʔKLeat

JDD

QRR
decide

new
ðHB
go

ĦML
carry QLL

few
QBL
accept

SJD
head down

QʕD
sit

ɣRB
sink

ṬLB
seek

KTB
write

...

XaYaZa
did XaaYiZu

doer

yaXYaZu
do

maXYaZa
miXYaZu
place to do

maXYuuZu
is patient to

XaYYaZa
made one do XaYiiZu

adjective
...

Three consonants
representing concepts

Syntactic Templates
deciding syntactic function

(Ice Breaker?) Arabic Morphology is
Three Concept Consonant times Syntactic Template

3

DRS
study

QRʔ
read ʔKLeat

JDD

QRR
decide

new
ðHB
go

ĦML
carry QLL

few
QBL
accept

SJD
head down

QʕD
sit

ɣRB
sink

ṬLB
seek

KTB
write

...

XaYaZa
did XaaYiZu

doer

yaXYaZu
do

maXYaZa
miXYaZu
place to do

maXYuuZu
is patient to

XaYYaZa
made one do XaYiiZu

adjective
...

Three consonants
representing concepts

Syntactic Templates
deciding syntactic function

few mosque basement

maDRaSa
miQʕaDmaSJiDuQaLiiLu

ṬaaLiBu

ĦaaMiLu
maɣRiDuQaRRaRa

decide
student

pregnant
school west

KaaTiBu
writer

KiTaaBu
book

KaTaBa
wrote

Fill XYZ
with ABC

(Ice Breaker?) Arabic Morphology is
Three Concept Consonant times Syntactic Template

3

DRS
study

QRʔ
read ʔKLeat

JDD

QRR
decide

new
ðHB
go

ĦML
carry QLL

few
QBL
accept

SJD
head down

QʕD
sit

ɣRB
sink

ṬLB
seek

KTB
write

...

XaYaZa
did XaaYiZu

doer

yaXYaZu
do

maXYaZa
miXYaZu
place to do

maXYuuZu
is patient to

XaYYaZa
made one do XaYiiZu

adjective
...

Three consonants
representing concepts

Syntactic Templates
deciding syntactic function

few mosque basement

maDRaSa
miQʕaDmaSJiDuQaLiiLu

ṬaaLiBu

ĦaaMiLu
maɣRiDuQaRRaRa

decide
student

pregnant
school west

KaaTiBu
writer

KiTaaBu
book

KaTaBa
wrote

Fill XYZ
with ABC

• Sematic languages (Hebrew, Amharic..)

• Implication: recent subword methods
are adequate for these languages?

• But its syntax is familiar to us

• VSO with postpositional modifiers

ذهب تارو الى المدرسة الجديدة التي تدرس هاناكو فيها ايضا
VERBPROPNADPNOUNADJPRONADP PROPN VERBADV

Taro went to the new school in which Hanako studies as well

What is Syntactic Theory?
• Provide explanations for phenomena arising from the way words are concatenated

• PP-attachment: "John (saw a girl (with a telescope))"

• Coordination: "Wendy (ran 19 miles) and (walked 9 miles)"

• control verb, complement, passive/active voice, scope, etc.

• Must be general to cover all languages, while describing language specificities

• e.g. Universal Dependencies (de Merneffe et al., 2014)

4

太郎 は 学校 へ 行っ た Taro went to school ذهب تارو الى المدرسة Taro okula gitti ...

Combinatory Categorial Grammar
• Categories with recursive function-like structure

• A small number of derivational rules (less than 10)

• Meta rules (cf. CFG: S !-> NP VP)

• Forward/backward application: X !-> X/Y Y X !-> Y X\Y

• Forward/backward composition rules: X/Z !-> X/Y Y/Z

5
a man is beating John

N

S

Steedman 2000, Bekki 2010

NNP/N

NP

(S\NP)/(S\NP)

S\NP
S\NP

(S\NP)/NP NP

X/Y
X\Y

argument
return value

Combinatory Categorial Grammar
• Categories with recursive function-like structure

• A small number of derivational rules (less than 10)

• Meta rules (cf. CFG: S !-> NP VP)

• Forward/backward application: X !-> X/Y Y X !-> Y X\Y

• Forward/backward composition rules: X/Z !-> X/Y Y/Z

5
a man is beating John

N

S

Steedman 2000, Bekki 2010

NNP/N

NP

(S\NP)/(S\NP)

S\NP
S\NP

(S\NP)/NP NP

X/Y
X\Y

argument
return value

(S\NP)/NP NP

Combinatory Categorial Grammar
• Categories with recursive function-like structure

• A small number of derivational rules (less than 10)

• Meta rules (cf. CFG: S !-> NP VP)

• Forward/backward application: X !-> X/Y Y X !-> Y X\Y

• Forward/backward composition rules: X/Z !-> X/Y Y/Z

5
a man is beating John

N

S

Steedman 2000, Bekki 2010

NNP/N

NP

(S\NP)/(S\NP)

S\NP
S\NP

(S\NP)/NP NP

X/Y
X\Y

argument
return value

(S\NP)/NP NP(S\NP)/NP

S\NP

Combinatory Categorial Grammar
• Categories with recursive function-like structure

• A small number of derivational rules (less than 10)

• Meta rules (cf. CFG: S !-> NP VP)

• Forward/backward application: X !-> X/Y Y X !-> Y X\Y

• Forward/backward composition rules: X/Z !-> X/Y Y/Z

5
a man is beating John

N

S

Steedman 2000, Bekki 2010

NNP/N

NP

(S\NP)/(S\NP)

S\NP
S\NP

(S\NP)/NP NP

X/Y
X\Y

argument
return value

(S\NP)/NP NP(S\NP)/NP

S\NP
S\NP

(S\NP)/(S\NP)

Combinatory Categorial Grammar
• Categories with recursive function-like structure

• A small number of derivational rules (less than 10)

• Meta rules (cf. CFG: S !-> NP VP)

• Forward/backward application: X !-> X/Y Y X !-> Y X\Y

• Forward/backward composition rules: X/Z !-> X/Y Y/Z

5
a man is beating John

N

S

Steedman 2000, Bekki 2010

NNP/N

NP

(S\NP)/(S\NP)

S\NP
S\NP

(S\NP)/NP NP

X/Y
X\Y

argument
return value

(S\NP)/NP NP(S\NP)/NP

S\NP
S\NP

(S\NP)/(S\NP)NNP/N

Combinatory Categorial Grammar
• Categories with recursive function-like structure

• A small number of derivational rules (less than 10)

• Meta rules (cf. CFG: S !-> NP VP)

• Forward/backward application: X !-> X/Y Y X !-> Y X\Y

• Forward/backward composition rules: X/Z !-> X/Y Y/Z

5
a man is beating John

N

S

Steedman 2000, Bekki 2010

NNP/N

NP

(S\NP)/(S\NP)

S\NP
S\NP

(S\NP)/NP NP

X/Y
X\Y

argument
return value

(S\NP)/NP NP(S\NP)/NP

S\NP
S\NP

(S\NP)/(S\NP)NNP/NNP/N

NP

Combinatory Categorial Grammar
• Categories with recursive function-like structure

• A small number of derivational rules (less than 10)

• Meta rules (cf. CFG: S !-> NP VP)

• Forward/backward application: X !-> X/Y Y X !-> Y X\Y

• Forward/backward composition rules: X/Z !-> X/Y Y/Z

5
a man is beating John

N

S

Steedman 2000, Bekki 2010

NNP/N

NP

(S\NP)/(S\NP)

S\NP
S\NP

(S\NP)/NP NP

X/Y
X\Y

argument
return value

(S\NP)/NP NP(S\NP)/NP

S\NP
S\NP

(S\NP)/(S\NP)NNP/NNP/N

NP
S\NP

S

Basic CCG-based Semantic Parsing
• Imagine functional programming
language (e.g., Haskell)

• Hand-crafted dictionary maps
(word, category) to a lambda term

• Here we use logical formulas
based on event semantics

• There exists an event , whose
argument 0 is john and ...

e

6

S\NP

NP
John

(S\NP)/NP NP
likes Mary

S

•F : NP !=> F
•F : N !=> \x !-> F(x)
•F : (S\NP)/NP !=> \y x !-> exist e. F(e) !!...
•F : S\NP !=> \x !-> exist e. F(e) & A0(0)
!!...

Dictionary

\x y !-> f(x,y): lambda term
john, mary: entity term
true, false: truth term

Basic CCG-based Semantic Parsing
• Imagine functional programming
language (e.g., Haskell)

• Hand-crafted dictionary maps
(word, category) to a lambda term

• Here we use logical formulas
based on event semantics

• There exists an event , whose
argument 0 is john and ...

e

6

S\NP

\y x !-> exist e. like e & A0 x & A1 y mary
NP
John

(S\NP)/NP NP
likes Mary

S

•F : NP !=> F
•F : N !=> \x !-> F(x)
•F : (S\NP)/NP !=> \y x !-> exist e. F(e) !!...
•F : S\NP !=> \x !-> exist e. F(e) & A0(0)
!!...

Dictionary

\x y !-> f(x,y): lambda term
john, mary: entity term
true, false: truth term

Basic CCG-based Semantic Parsing
• Imagine functional programming
language (e.g., Haskell)

• Hand-crafted dictionary maps
(word, category) to a lambda term

• Here we use logical formulas
based on event semantics

• There exists an event , whose
argument 0 is john and ...

e

6

S\NP

\y x !-> exist e. like e & A0 x & A1 y mary

\x !-> exist e. like e & A0 x & A1 mary

NP
John

(S\NP)/NP NP
likes Mary

S

•F : NP !=> F
•F : N !=> \x !-> F(x)
•F : (S\NP)/NP !=> \y x !-> exist e. F(e) !!...
•F : S\NP !=> \x !-> exist e. F(e) & A0(0)
!!...

Dictionary

\x y !-> f(x,y): lambda term
john, mary: entity term
true, false: truth term

Basic CCG-based Semantic Parsing
• Imagine functional programming
language (e.g., Haskell)

• Hand-crafted dictionary maps
(word, category) to a lambda term

• Here we use logical formulas
based on event semantics

• There exists an event , whose
argument 0 is john and ...

e

6

 john

S\NP

\y x !-> exist e. like e & A0 x & A1 y mary

\x !-> exist e. like e & A0 x & A1 mary

NP
John

(S\NP)/NP NP
likes Mary

S

•F : NP !=> F
•F : N !=> \x !-> F(x)
•F : (S\NP)/NP !=> \y x !-> exist e. F(e) !!...
•F : S\NP !=> \x !-> exist e. F(e) & A0(0)
!!...

Dictionary

\x y !-> f(x,y): lambda term
john, mary: entity term
true, false: truth term

Basic CCG-based Semantic Parsing
• Imagine functional programming
language (e.g., Haskell)

• Hand-crafted dictionary maps
(word, category) to a lambda term

• Here we use logical formulas
based on event semantics

• There exists an event , whose
argument 0 is john and ...

e

6

 exist e. like e & A0 john & A1 mary

 john

S\NP

\y x !-> exist e. like e & A0 x & A1 y mary

\x !-> exist e. like e & A0 x & A1 mary

NP
John

(S\NP)/NP NP
likes Mary

S

•F : NP !=> F
•F : N !=> \x !-> F(x)
•F : (S\NP)/NP !=> \y x !-> exist e. F(e) !!...
•F : S\NP !=> \x !-> exist e. F(e) & A0(0)
!!...

Dictionary

\x y !-> f(x,y): lambda term
john, mary: entity term
true, false: truth term

Semantic Parsing in Real Application

\G !-> exist x. man x & G x

\F G !-> exist. F x & G x

exist x. man x & exist e. like e & A0 x & A1 mary

\x !-> man x
\Q !-> Q(\y !-> (\P !-> P(\x !->
 exist e. like e & A0 x)) & A1 y) \F !-> F mary

(S\NP)/NP NP

S\NP
\P !-> P(\x !-> exist e. like e & A0 x) & A1 mary

NP/N

NP

N
a man likes Mary

S
F, G: entity !-> truth

P, Q: (entity !-> truth) !-> truth

Common
noun

Quantifier

7

e.g. Mineshima et al., 2015, Abzianidze, 2017

Categories work as "type", preventing
invalid output formula. (e.g., NP is always
(entity !-> truth) !-> truth).

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernymgo

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

!4

ccg2lambda (Mineshima et al., 2015)
CCG-based Inference System

8

(latter half of the talk)
e.g. Mineshima et al., 2015, Abzianidze, 2017

Annotation Criteria for CCG
 Q: How do you choose that
structure/category? Is it because
you like that?

A: No, it is designed to optimize
the performance of inference
systems built upon it

• e.g. Why are there N and NP?

9

syntax semantics
NP

(John) proper noun
entity
(john)

N
(dog) common noun

set of entities
(\x !-> dog x)

Annotation Criteria for CCG
 Q: How do you choose that
structure/category? Is it because
you like that?

A: No, it is designed to optimize
the performance of inference
systems built upon it

• e.g. Why are there N and NP?

9

\G !-> exist x. young x & man x & love_mary x & G x

\F G !-> !..

\x !-> man x

NP/N

N

a

man

\F x !-> young x & F x
N/N
young

\x !-> man x & love_mary x
N

(N\N)/(S\NP)
who

\F x !-> love_mary x & F x

loves Mary
S\NP

\X !-> !.. \P !-> !..

\x !-> young x & man x & love_mary x
N

N\N

NP

syntax semantics
NP

(John) proper noun
entity
(john)

N
(dog) common noun

set of entities
(\x !-> dog x)

a relative clause is semantically
like adjectives (intersective)

many adjectives behave
like set intersection

Annotation Criteria for CCG
 Q: How do you choose that
structure/category? Is it because
you like that?

A: No, it is designed to optimize
the performance of inference
systems built upon it

• e.g. Why are there N and NP?

9

\G !-> exist x. young x & man x & love_mary x & G x

\F G !-> !..

\x !-> man x

NP/N

N

a

man

\F x !-> young x & F x
N/N
young

\x !-> man x & love_mary x
N

(N\N)/(S\NP)
who

\F x !-> love_mary x & F x

loves Mary
S\NP

\X !-> !.. \P !-> !..

\x !-> young x & man x & love_mary x
N

N\N

NP

syntax semantics
NP

(John) proper noun
entity
(john)

N
(dog) common noun

set of entities
(\x !-> dog x)

a relative clause is semantically
like adjectives (intersective)

many adjectives behave
like set intersection

NP
who loves Mary

N\N

John

❌
?

a relative clause cannot
modify a proper noun

Why CCG? and not dependencies?
• 😊 Gives elegant explanations for complex phenomena

• leads to better meaning representation

• cf. semantic parsing based on UD (Reddy et al., 2017)

• suffers from control verbs, coordination, etc.

10

LAMBDA is designed to work with dependency
graphs as well (Section 3.2). Finally, several con-
structions differ in structure between UD and SD,
which requires different handling in the semantic
interface (Section 3.3).

3.1 Enhancement

Both Schuster and Manning (2016) and Nivre et al.
(2016) note the necessity of an enhanced UD rep-
resentation to enable semantic applications. How-
ever, such enhancements are currently only avail-
able for a subset of languages in UD. Instead, we
rely on a small number of enhancements for our
main application—semantic parsing for question-
answering—with the hope that this step can be re-
placed by an enhanced UD representation in the fu-
ture. Specifically, we define three kinds of enhance-
ments: (1) long-distance dependencies; (2) types
of coordination; and (3) refined question word tags.
These correspond to line 2 in Algorithm 1.

First, we identify long-distance dependencies in
relative clauses and control constructions. We fol-
low Schuster and Manning (2016) and find these
using the labels acl (relative) and xcomp (control).
Figure 2(a) shows the long-distance dependency in
the sentence Anna wants to marry Kristoff. Here,
marry is provided with its missing nsubj (dashed
arc). Second, UD conflates all coordinating con-
structions to a single dependency label, conj. To
obtain the correct coordination scope, we refine
conj to conj:verb, conj:vp, conj:sentence,
conj:np, and conj:adj, similar to Reddy et al.
(2016). Finally, unlike the PTB tags (Marcus et al.,
1993) used by SD, the UD part-of-speech tags do
not distinguish question words. Since these are cru-
cial to question-answering, we use a small lexicon
to refine the tags for determiners (DET), adverbs
(ADV) and pronouns (PRON) to DET:WH, ADV:WH
and PRON:WH, respectively. Specifically, we use
a list of 12 (English), 14 (Spanish) and 35 (Ger-
man) words, respectively. This is the only part
of UDEPLAMBDA that relies on language-specific
information. We hope that, as the coverage of mor-
phological features in UD improves, this refine-
ment can be replaced by relying on morphological
features, such as the interrogative feature (INT).

3.2 Graph Structures and BIND

To handle graph structures that may result from the
enhancement step, such as those in Figure 2(a), we
propose a variable-binding mechanism that differs

Anna wants to marry Kristo↵

nsubj

xcomp

mark dobj

nsubj

(a) With long-distance dependency.

Anna wants to marry Kristo↵

⌦ ⌦

nsubj

xcomp

mark dobj

bind nsubj

(b) With variable binding.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristoff.

from that of DEPLAMBDA. This is indicated in
line 3 of Algorithm 1. First, each long-distance
dependency is split into independent arcs as shown
in Figure 2(b). Here, W is a placeholder for the sub-
ject of marry, which in turn corresponds to Anna as
indicated by the binding of W via the pseudo-label
BIND. We treat BIND like an ordinary dependency
label with semantics MERGE and process the result-
ing tree as usual, via the s-expression:

(nsubj (xcomp wants (nsubj (mark
(dobj marry Kristoff) to) W) (BIND Anna W)) ,

with the lambda-expression substitutions:

wants, marry 2 EVENT; to 2 FUNCTIONAL;
Anna, Kristoff 2 ENTITY;
mark 2 HEAD; BIND 2 MERGE;
xcomp = l f gx.9y. f (x)^g(y)^xcomp(xe,ye) .

These substitutions are based solely on unlexi-
calized context. For example, the part-of-speech
tag PROPN of Anna invokes an ENTITY expression.

The placeholder W has semantics lx.EQ(x,w),
where EQ(u,w) is true iff u and w are equal (have
the same denotation), which unifies the subject vari-
able of wants with the subject variable of marry.

After substitution and composition, we get:

lz.9xywv.wants(ze)^Anna(xa)^ arg1(ze,xa)^ EQ(x,w)
^ marry(ye)^xcomp(ze,ye)^ arg1(ye,va)^ EQ(v,w)
^ Kristoff(wa)^ arg2(ye,wa) ,

This expression may be simplified further by
replacing all occurrences of v with x and removing
the unification predicates EQ, which results in:

lz.9xyw.wants(ze)^Anna(xa)^ arg1(ze,xa)
^ marry(ye)^xcomp(ze,ye)^ arg1(ye,xa)
^ Kristoff(wa)^ arg2(ye,wa) .

Positive and negative gradable adjectives

Positive adjectives

A is taller than B is.

∃δ (tall(A, δ) ∧ ¬ tall(B, δ))

! There exists a degree δ of tallness that A satisfies
but B does not.

13 / 45

δ
tall(A, δ) ¬ tall(B, δ)

ɹ

Why CCG? and not dependencies?
• 😊 Gives elegant explanations for complex phenomena

• leads to better meaning representation

• cf. semantic parsing based on UD (Reddy et al., 2017)

• suffers from control verbs, coordination, etc.

• 😊 Collaborate with linguists to address long-tail problems

• e.g., comparatives (Haruta et al., 2019)

10

LAMBDA is designed to work with dependency
graphs as well (Section 3.2). Finally, several con-
structions differ in structure between UD and SD,
which requires different handling in the semantic
interface (Section 3.3).

3.1 Enhancement

Both Schuster and Manning (2016) and Nivre et al.
(2016) note the necessity of an enhanced UD rep-
resentation to enable semantic applications. How-
ever, such enhancements are currently only avail-
able for a subset of languages in UD. Instead, we
rely on a small number of enhancements for our
main application—semantic parsing for question-
answering—with the hope that this step can be re-
placed by an enhanced UD representation in the fu-
ture. Specifically, we define three kinds of enhance-
ments: (1) long-distance dependencies; (2) types
of coordination; and (3) refined question word tags.
These correspond to line 2 in Algorithm 1.

First, we identify long-distance dependencies in
relative clauses and control constructions. We fol-
low Schuster and Manning (2016) and find these
using the labels acl (relative) and xcomp (control).
Figure 2(a) shows the long-distance dependency in
the sentence Anna wants to marry Kristoff. Here,
marry is provided with its missing nsubj (dashed
arc). Second, UD conflates all coordinating con-
structions to a single dependency label, conj. To
obtain the correct coordination scope, we refine
conj to conj:verb, conj:vp, conj:sentence,
conj:np, and conj:adj, similar to Reddy et al.
(2016). Finally, unlike the PTB tags (Marcus et al.,
1993) used by SD, the UD part-of-speech tags do
not distinguish question words. Since these are cru-
cial to question-answering, we use a small lexicon
to refine the tags for determiners (DET), adverbs
(ADV) and pronouns (PRON) to DET:WH, ADV:WH
and PRON:WH, respectively. Specifically, we use
a list of 12 (English), 14 (Spanish) and 35 (Ger-
man) words, respectively. This is the only part
of UDEPLAMBDA that relies on language-specific
information. We hope that, as the coverage of mor-
phological features in UD improves, this refine-
ment can be replaced by relying on morphological
features, such as the interrogative feature (INT).

3.2 Graph Structures and BIND

To handle graph structures that may result from the
enhancement step, such as those in Figure 2(a), we
propose a variable-binding mechanism that differs

Anna wants to marry Kristo↵

nsubj

xcomp

mark dobj

nsubj

(a) With long-distance dependency.

Anna wants to marry Kristo↵

⌦ ⌦

nsubj

xcomp

mark dobj

bind nsubj

(b) With variable binding.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristoff.

from that of DEPLAMBDA. This is indicated in
line 3 of Algorithm 1. First, each long-distance
dependency is split into independent arcs as shown
in Figure 2(b). Here, W is a placeholder for the sub-
ject of marry, which in turn corresponds to Anna as
indicated by the binding of W via the pseudo-label
BIND. We treat BIND like an ordinary dependency
label with semantics MERGE and process the result-
ing tree as usual, via the s-expression:

(nsubj (xcomp wants (nsubj (mark
(dobj marry Kristoff) to) W) (BIND Anna W)) ,

with the lambda-expression substitutions:

wants, marry 2 EVENT; to 2 FUNCTIONAL;
Anna, Kristoff 2 ENTITY;
mark 2 HEAD; BIND 2 MERGE;
xcomp = l f gx.9y. f (x)^g(y)^xcomp(xe,ye) .

These substitutions are based solely on unlexi-
calized context. For example, the part-of-speech
tag PROPN of Anna invokes an ENTITY expression.

The placeholder W has semantics lx.EQ(x,w),
where EQ(u,w) is true iff u and w are equal (have
the same denotation), which unifies the subject vari-
able of wants with the subject variable of marry.

After substitution and composition, we get:

lz.9xywv.wants(ze)^Anna(xa)^ arg1(ze,xa)^ EQ(x,w)
^ marry(ye)^xcomp(ze,ye)^ arg1(ye,va)^ EQ(v,w)
^ Kristoff(wa)^ arg2(ye,wa) ,

This expression may be simplified further by
replacing all occurrences of v with x and removing
the unification predicates EQ, which results in:

lz.9xyw.wants(ze)^Anna(xa)^ arg1(ze,xa)
^ marry(ye)^xcomp(ze,ye)^ arg1(ye,xa)
^ Kristoff(wa)^ arg2(ye,wa) .

Positive and negative gradable adjectives

Positive adjectives

A is taller than B is.

∃δ (tall(A, δ) ∧ ¬ tall(B, δ))

! There exists a degree δ of tallness that A satisfies
but B does not.

13 / 45

δ
tall(A, δ) ¬ tall(B, δ)

ɹ

Why CCG? and not dependencies?
• 😊 Gives elegant explanations for complex phenomena

• leads to better meaning representation

• cf. semantic parsing based on UD (Reddy et al., 2017)

• suffers from control verbs, coordination, etc.

• 😊 Collaborate with linguists to address long-tail problems

• e.g., comparatives (Haruta et al., 2019)

• 😊 General to cover many languages, giving

 detailed description of language specifities

10

LAMBDA is designed to work with dependency
graphs as well (Section 3.2). Finally, several con-
structions differ in structure between UD and SD,
which requires different handling in the semantic
interface (Section 3.3).

3.1 Enhancement

Both Schuster and Manning (2016) and Nivre et al.
(2016) note the necessity of an enhanced UD rep-
resentation to enable semantic applications. How-
ever, such enhancements are currently only avail-
able for a subset of languages in UD. Instead, we
rely on a small number of enhancements for our
main application—semantic parsing for question-
answering—with the hope that this step can be re-
placed by an enhanced UD representation in the fu-
ture. Specifically, we define three kinds of enhance-
ments: (1) long-distance dependencies; (2) types
of coordination; and (3) refined question word tags.
These correspond to line 2 in Algorithm 1.

First, we identify long-distance dependencies in
relative clauses and control constructions. We fol-
low Schuster and Manning (2016) and find these
using the labels acl (relative) and xcomp (control).
Figure 2(a) shows the long-distance dependency in
the sentence Anna wants to marry Kristoff. Here,
marry is provided with its missing nsubj (dashed
arc). Second, UD conflates all coordinating con-
structions to a single dependency label, conj. To
obtain the correct coordination scope, we refine
conj to conj:verb, conj:vp, conj:sentence,
conj:np, and conj:adj, similar to Reddy et al.
(2016). Finally, unlike the PTB tags (Marcus et al.,
1993) used by SD, the UD part-of-speech tags do
not distinguish question words. Since these are cru-
cial to question-answering, we use a small lexicon
to refine the tags for determiners (DET), adverbs
(ADV) and pronouns (PRON) to DET:WH, ADV:WH
and PRON:WH, respectively. Specifically, we use
a list of 12 (English), 14 (Spanish) and 35 (Ger-
man) words, respectively. This is the only part
of UDEPLAMBDA that relies on language-specific
information. We hope that, as the coverage of mor-
phological features in UD improves, this refine-
ment can be replaced by relying on morphological
features, such as the interrogative feature (INT).

3.2 Graph Structures and BIND

To handle graph structures that may result from the
enhancement step, such as those in Figure 2(a), we
propose a variable-binding mechanism that differs

Anna wants to marry Kristo↵

nsubj

xcomp

mark dobj

nsubj

(a) With long-distance dependency.

Anna wants to marry Kristo↵

⌦ ⌦

nsubj

xcomp

mark dobj

bind nsubj

(b) With variable binding.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristoff.

from that of DEPLAMBDA. This is indicated in
line 3 of Algorithm 1. First, each long-distance
dependency is split into independent arcs as shown
in Figure 2(b). Here, W is a placeholder for the sub-
ject of marry, which in turn corresponds to Anna as
indicated by the binding of W via the pseudo-label
BIND. We treat BIND like an ordinary dependency
label with semantics MERGE and process the result-
ing tree as usual, via the s-expression:

(nsubj (xcomp wants (nsubj (mark
(dobj marry Kristoff) to) W) (BIND Anna W)) ,

with the lambda-expression substitutions:

wants, marry 2 EVENT; to 2 FUNCTIONAL;
Anna, Kristoff 2 ENTITY;
mark 2 HEAD; BIND 2 MERGE;
xcomp = l f gx.9y. f (x)^g(y)^xcomp(xe,ye) .

These substitutions are based solely on unlexi-
calized context. For example, the part-of-speech
tag PROPN of Anna invokes an ENTITY expression.

The placeholder W has semantics lx.EQ(x,w),
where EQ(u,w) is true iff u and w are equal (have
the same denotation), which unifies the subject vari-
able of wants with the subject variable of marry.

After substitution and composition, we get:

lz.9xywv.wants(ze)^Anna(xa)^ arg1(ze,xa)^ EQ(x,w)
^ marry(ye)^xcomp(ze,ye)^ arg1(ye,va)^ EQ(v,w)
^ Kristoff(wa)^ arg2(ye,wa) ,

This expression may be simplified further by
replacing all occurrences of v with x and removing
the unification predicates EQ, which results in:

lz.9xyw.wants(ze)^Anna(xa)^ arg1(ze,xa)
^ marry(ye)^xcomp(ze,ye)^ arg1(ye,xa)
^ Kristoff(wa)^ arg2(ye,wa) .

Interesting Model for CCG Parsing
• Category-factored Model (Lewis and Steedman, 2014)

• Complex categories almost uniquely determine higher-level structure

• Exactly same form as POS tagging, but models the entire tree!

• Note: computing is not trivial (CKY parsing is needed)arg max
y∈𝒴

p(y |x)

11

p(y |x) = ∏ptag(ci |x)
a man is beating John

(S\NP)/NP NP(S\NP)/(S\NP)NP/N N

S

NP S\NP
S\NP

set of valid CCG trees

Interesting Model for CCG Parsing
• Category-factored Model (Lewis and Steedman, 2014)

• Complex categories almost uniquely determine higher-level structure

• Exactly same form as POS tagging, but models the entire tree!

• Note: computing is not trivial (CKY parsing is needed)arg max
y∈𝒴

p(y |x)

• (Advantage) Easy to compute inside/outside probabilities

• Even upper bounds on these probs

11

p(y |x) = ∏ptag(ci |x)
a man is beating John

(S\NP)/NP NP(S\NP)/(S\NP)NP/N N

S

NP S\NP
S\NP

InsideOutside

set of valid CCG trees

Efficient A* Parsing

12

• Searches based on

• : Sum of the cost to the node

• : Estimate on the cost to the goal

•e.g. Manhattan distance

f = g + h

g

h

Actually A* parsing is shortest path
problem on hypergraph

s: score for the constructed
 subtree
= score for the traveled path

h: estimate for outside probability
= estimate for score to the goal

s: score for the traveled path

h: estimate for score to the goal

● Parsing and Hypergraph, klein and manning, 2004
● Directed hypergraphs and applications Gallo et al., 1992

s(t)
h(t)

goal
Shortest Path Problem

Node f
(1,1) 0.1
(2,0) 0.1
(0,1) 0.1
(0,2) 0.9
(3,0) 0.99

... ...
PriorityQueue(f)

Klein & Manning, 2003

12

a man is beating John
(S\NP)/NP NP(S\NP)/(S\NP)NP/N N

S

NP S\NP
S\NP

Efficient A* Parsing

12

• Searches based on

• : Sum of the cost to the node

• : Estimate on the cost to the goal

•e.g. Manhattan distance

f = g + h

g

h

Actually A* parsing is shortest path
problem on hypergraph

s: score for the constructed
 subtree
= score for the traveled path

h: estimate for outside probability
= estimate for score to the goal

s: score for the traveled path

h: estimate for score to the goal

● Parsing and Hypergraph, klein and manning, 2004
● Directed hypergraphs and applications Gallo et al., 1992

s(t)
h(t)

goal
Shortest Path Problem A*-based Chart Parsing

Node f
(1,1) 0.1
(2,0) 0.1
(0,1) 0.1
(0,2) 0.9
(3,0) 0.99

... ...
PriorityQueue(f)

• Searches based on

• : Inside probability

• : Upper bound on outside probability

f = g + h

g

h

∑
i

max
c

ptag(ci = c |x)

Node f
0.1
0.1
0.1
0.9
0.99

... ...

PriorityQueue(f)

N3,5
N1,1

S\N/N2,2
N4,4
S\N2,2

Chart N3,5

N4,5

N/N4,4N/N3,3 N5,5

Very efficient while guaranteeing the optimality of the solution!

Klein & Manning, 2003

昨日 買った カレーを 食べる
S\NSS/S

S

S
N

N

N/N

Category-factoredモデルは日本語に不適
• 係り先が曖昧なカテゴリが存在： (連体修飾、副詞)

!8

昨日 買った カレーを 食べた
S\NSS/S

S

S
N

N

N/N

S

昨日 買った カレーを 食べた
S\NSS/S

S
N

N
N/N

S/S

•人手ルールの改良では対処困難
•「昨日」と動詞の時制の一致など

S

昨日 熟した カレーを 食べた
S\NSS/S

S
N

N
N/N

昨日 買った カレーを 食べる
S\NSS/S

S

S
N

N

N/N

Category-factoredモデルは日本語に不適
• 係り先が曖昧なカテゴリが存在： (連体修飾、副詞)

!8

昨日 買った カレーを 食べた
S\NSS/S

S

S
N

N

N/N

S

昨日 買った カレーを 食べた
S\NSS/S

S
N

N
N/N

S/S

•人手ルールの改良では対処困難
•「昨日」と動詞の時制の一致など

S

昨日 熟した カレーを 食べた
S\NSS/S

S
N

N
N/N

However..
• Modeling Japanese sentence structures with this model is not so reliable

• It assigns the exactly same probabilities to the structures right

• The kind of ambiguities that must be addressed in parsing!

• 🤔 Dilemma:

• Want to extend the model to achieve higher expressivity

• Extension with TreeLSTMs (Lee et al., 2016)

• Do not want to lose the original merits

• Efficiency and optimality guarantee

13

提案：係り受け構造の尤もらしさを明示的にモデル化

•Category & Dependency-factoredモデル
•
•係り受け構造を用いて終端以上の構造の良さを考慮
• と の局所的な項の積に分解可能
•Category-factoredモデル同様にA*構文解析が可能
•すべての単語について と は事前に計算可

!10

p(y |x) = ∏ptag(ci |x) × ∏pdep(hi |x)

h1 h2 h3
h4

昨日 買った カレーを 食べる
S\NSS/S

S

S
N

N

N/N ROOTp() p()
S

昨日 買った カレーを 食べる
S\NSS/S

S
N

N
N/N

ROOTh1 h2 h3 h4
>

pdepptag

pdepptag

19

●
NoDep = dis

car
d d

ep.
 pro

bs,
 us

e th
e h

eur
isti

cs
in L

ew
is+

, 20
14

●
De

pen
den

cy
pro

bab
iliti

es
con

trib
ute

 to
per

form
anc

e g
ain

.

●
HeadFirst per

form
s b

ett
er.

CC
GB

ank
 Ex

per
ime

nt (
De

v)

84.
58585.
58686.
58787.
588

85.
8

86

86.
6

86.
9

87.
6

Labeled F1

CC
GB

ank
+Tr

i-tra
inin

g

NoDep L
ewisRuleH

eadFirst
HeadFirst

LewisRule
高速

My Previous Contribution
• Category and Dependency-factored Model (Yoshikawa et al., 2017)

• Model the higher-level structure through dependency edges

• The probability is decomposable: A* parsing is available!

• The all quantities required in A* search can be pre-computed

• Efficiency and optimality guarantee

14

p(y |x) = ∏ptag(ci |x) × ∏pdep(hi |x)

Calculating and ptag pdep
• biLSTM-based vectors:

• Best-performing dependency parsing
method (Dozat et al., 2017) is utilized:

• Biaffine layer to model dependencies

• Bilinear layer to model categories

ri

15

LSTM

LSTM

concat

x1

concat concat concatr1 r2 r3 r4

Bilinear Biffine

x1 x2 x3 x4⋯
⋯⋯

NPS S/SN ⋯

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

x2 x3 x4

pdepptag

Node f
(1,1) 0.1
(2,0) 0.1
(0,1) 0.1
(0,2) 0.9
(3,0) 0.99
... ...

PriorityQueue(f)

N3,5

N4,5

N/N4,4N/N3,3 N5,5

a man is beating John
(S\NP)/NP NP(S\NP)/(S\NP)NP/N N

S

NP S\NP
S\NP

Used as costs in A* search

pdep() ∝ ri
TWrj+ri

Tuxixj

ptag(ci = c) ∝ ri
TWcri_head

Experiments on English CCGbank

• English CCGbank (Hockenmeier and Steedman, 2007)

• the same set of sentences as WSJ

• Accuracy: the proposed method achieved the best score

• Speed: it is more efficient than the powerful TreeLSTM-based method

16

La
be

le
d
F1

87

88

89

90

91

Lewis+, 2016 Lee et al, 2016 Ours Ours + ELMo

90.5

88.888.7
88.0

Category-factored
model

TreeLSTM

Sp
ee

d
(#
se
nt
 /
 s
ec

.)

0

5.5

11

16.5

22

Lewis+, 2016 Lee et al, 2016 Ours

14.5

9.3

21.9

Experiments on Japanese CCGbank

• Japanese CCGbank (Uematsu et al., 2013)

• the same set as Kyoto University Text Corpus (Mainichi newspaper)

• (Noji et al., 2016): Shift-reduce CCG parser with a linear model

• For Japanese language, modeling the level higher than per-terminal is crucial
17

Ac
cu

ra
cy

80

85

90

95

100

Lewis et al., 2016 Noji et al, 2016 Ours

91.5
87.5

81.5

94.193.093.7

Category Dependency

Summary so far
• I introduced CCG and my previous work on its parsing algorithm

• CCG provides elegant explanations for linguistic phenomena for various languages

• I proposed an efficient CCG parsing model, utilizing dependencies within a CCG tree

• The proposed method is especially effective for the Japanese language

• Next, I'd like to talk about an inference system based on CCG, for solving
Recognizing Textual Inference task

18

(Recent progress) Combining with AllenNLP!
● CCG supertagging is a popular benchmark among LM papers

○ Why not CCG parsing?

● One-line command to train on your own dataset

● LF-output, tree visualization, etc.

● Some results: with ELMo, it improves approx. 2% in labeled F1

5

$ pip install depccg
$ depccg_en download

Part Two:
Combining Axiom Injection and Knowledge

Base Completion for Efficient Natural
Language Inference

Masashi Yoshikawa, Koji Mineshima, Hiroshi Noji, Daisuke Bekki
Nara Institute of Science and Technology

Ochanomizu University
Artificial Intelligence Research Center, AIST

*presented at AAAI-33

• A testbed to evaluate if a machine can reason as we do
 - lexical, logical, syntactic phenomena, etc.
• Elemental technology for improving other NLP tasks
 - Question answering, reading comprehension, etc.

20

Recognizing Textual Entailment
P1: Clients at the demonstration were all
 impressed by the system’s performance.

Premise(s)
Hypothesis

H: Smith was impressed by the
 system’s performance.

 P2: Smith was a client at the demonstration.

{entailment, contradiction, unknown}

a.k.a. Natural Language Inference

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

21

ccg2lambda (Mineshima et al., 2015)

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

21

👍 Unsupervised
👍 Captures linguistic phenomena
 - 83.6 % accuracy in SICK

ccg2lambda (Mineshima et al., 2015)

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

21

👍 Unsupervised
👍 Captures linguistic phenomena
 - 83.6 % accuracy in SICK

 How to handle external knowledge?
 e.g.
 - Use WordNet as axioms blows up
the search space of theorem proving!

🤔
∀x . hike(x) → walk(x)

ccg2lambda (Mineshima et al., 2015)

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

22

"Abduction" mechanism (Martínez-Gómez et al., 2017)

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq
theorem
prover

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.
Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

22

"Abduction" mechanism (Martínez-Gómez et al., 2017)

More steps when the 1st theorem proving is unsuccessful
 1. Search KBs (e.g. WordNet) for useful lexical relations
 2. Rerun Coq with additional axioms

• Promising approach to handling external knowledge within a logic-based system

23

"Abduction" mechanism (Martínez-Gómez et al., 2017)

• Promising approach to handling external knowledge within a logic-based system

• (However,) Practical issues:

• We want to add more knowledge to increase the coverage of reasoning

• We want the KBs to be compact for efficient inference & memory usage

23

"Abduction" mechanism (Martínez-Gómez et al., 2017)

• Promising approach to handling external knowledge within a logic-based system

• (However,) Practical issues:

• We want to add more knowledge to increase the coverage of reasoning

• We want the KBs to be compact for efficient inference & memory usage

• Do not want to run Coq again and again for real applications 😣

• Ideally, the mechanism should be tightly integrated with the inference for effciency

23

"Abduction" mechanism (Martínez-Gómez et al., 2017)

• Promising approach to handling external knowledge within a logic-based system

• (However,) Practical issues:

• We want to add more knowledge to increase the coverage of reasoning

• We want the KBs to be compact for efficient inference & memory usage

• Do not want to run Coq again and again for real applications 😣

• Ideally, the mechanism should be tightly integrated with the inference for effciency

• We solve these issues by:
1. Replacing search on KBs by techniques of "Knowledge Base Completion"

2. Developing "abduction" Coq plugin

👉

23

"Abduction" mechanism (Martínez-Gómez et al., 2017)

1. Extending Abduction Mechanism with KBC
• Knowledge Base Completion:
• A task to complement missing relations

• recent huge advancement

hike
walk

ride

hypernym

hyponym
antonym

go

hypernym

antonym

24

1. Extending Abduction Mechanism with KBC
• Knowledge Base Completion:
• A task to complement missing relations

• recent huge advancement

• We propose an abduction mechanism based on KBC:

• If is missing, use it as axiom if (threshold)

• ComplEx (Trouillon et al., 2016): ϕ(s, r, o) = σ(Re(⟨es, er, eo⟩)), ∀e𝚟 ∈ ℂn

hike
walk

ride

hypernym

hyponym
antonym

go

hypernym

antonym

hike
walk

hypernym

hypernym
go φ

ehike

ewalk
ehypernym 0.9

24

ϕ(s, r, o) ≥ δ(s, r, o)

1. Extending Abduction Mechanism with KBC

hike
walk

hypernym

hypernym
go φ

ehike

ewalk
ehypernym 0.9

Search on KB KBC

Latent Knowledge Hand-crafted rules
(e.g. transitive closure of hypernym)

KBC models learn
accurately

Efficiency Multi-hop reasoning
takes time

One dot product
(ComplEx)

Scalability Adding more knowledge
harms the search time

Knowledge from VerbOcean
(Chklovski et al., 2004) are

added for free

25

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

26

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

26

Lexical gap!

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

26

Lexical gap!

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

26

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

26

Construct a list of predicate
pairs from context and goal

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

26

Construct a list of predicate
pairs from context and goal

Evaluate all the predicate
pairs using ComplEx

Filter them by score

φ
ehike

ewalk
ehypernym 0.9

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

26

Construct a list of predicate
pairs from context and goal

Evaluate all the predicate
pairs using ComplEx

Filter them by score

φ
ehike

ewalk
ehypernym 0.9

Add them as axioms
(hike, hypernym, walk)

∀x . hike(x) → walk(x)

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

1 subgoal
 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 NLax1 : forall x : Event, hike x -> walk x
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

26

Construct a list of predicate
pairs from context and goal

Evaluate all the predicate
pairs using ComplEx

Filter them by score

φ
ehike

ewalk
ehypernym 0.9

Add them as axioms
(hike, hypernym, walk)

∀x . hike(x) → walk(x)

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

T: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq
theorem
prover

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.
Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq

result: yes
φ

ehike
ewalk

ehypernym 0.9

+abduction

27

Summary so far...

👍 Efficient and scalable abduction mechanism
👍 No need to rerun Coq in abduction
• Our method is applicable to other logic-based systems
• e.g. Modern Type Theory (Bernandy and Chatzikyriakidis, 2017)

L =
X

((s,r,o),t)2D

t log f(s, r, o) + (1� t) log(1� f(s, r, o))

Experiments
•SICK RTE dataset (Marelli et al., 2014)

• Evaluation metrices: accuracy and processing time

• ComplEx is trained on logistic loss:

• The training data is constructed using WordNet

• synonym, antonym, hyponym, hypernyms, etc.

• The trained ComplEx model achieves MRR of 77.68%

28

H: One woman is playing a flute.

P: A flute is being played in a lovely way by a girl.

lexical
phenomena

syntactic

logical entailment

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

• RTE performance (accuracy)

Experimental Results on SICK

77.0
79.3
81.7
84.0

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

83.55%83.55%

77.3%

82%

29

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

• RTE performance (accuracy)

Experimental Results on SICK

77.0
79.3
81.7
84.0

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

83.55%83.55%

77.3%

82%

Achieves the same accuracy,
improving significantly
from "no knowledge" case

29

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

• RTE performance (accuracy)

Experimental Results on SICK

77.0
79.3
81.7
84.0

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

83.55%83.55%

77.3%

82%

0.0
3.3
6.7

10.0

no knowledge Search on KB KBC (Ours)

4.03
9.15

3.79

• Processing speed (second per a problem)
Achieves the same accuracy,
improving significantly
from "no knowledge" case

29

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

• RTE performance (accuracy)

Experimental Results on SICK

77.0
79.3
81.7
84.0

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

83.55%83.55%

77.3%

82%

0.0
3.3
6.7

10.0

no knowledge Search on KB KBC (Ours)

4.03
9.15

3.79

• Processing speed (second per a problem)
Achieves the same accuracy,
improving significantly
from "no knowledge" case

Our method halves the time
to process an RTE problem!29

Summary of Part Two
• A KBC-based axiom injection for logic-based RTE systems

• Efficient, scalable, and it provides latent knowledge

•abduction tactic for further faster reasoning
• Other topics:

• Adding other KB (VerbOcean) without losing efficiency

• Evaluating learned latent knowledge in terms of RTE (LexSICK dataset)

• All the codes, dataset and slides are available:
• https://github.com/masashi-y/abduction_kbc

30

https://github.com/masashi-y/abduction_kbc

P: ITEL won more orders than APCOM did.
H: APCOM won some orders.

The performance of ccg2lambda on various datasets

• SICK (Marelli et al., 2014): Accuracy 82,3%

• FraCaS (Cooper et al., 1992): Accuracy 69%

•SNLI (Bowman et al., 2015): No result

P: A flute is being played in a lovely way by a girl.
H: One woman is playing a flute

P: Smith believed that ITEL had won the contract in 1992.
H: ITEL won the contract in 1992.

P: A black race car starts up in front of a crowd of people
H: A man is driving down a lonely road.

passive voice, quantifier
lexical semantics

Quantifier, Plurals,
Adjectives, Comparatives,

Verbs, Attitudes

(Haruta et al., 2019)
Adjectives (22 problems): 100%

Comparatives (31): 94%

"a crowd" relates to "lonely",
"car starts up" relates to "driving",

Summary
• A CCG-based system has some advantages in handling complex linguistic phenomena

• They reside in the long tail of distribution, and have been the focus of linguistics

• It is unlikely that a neural method understands passive voice, though it achieves the similar
accuracy on SICK using 5,000 sents ...

• Difficulties at handling similarities between phrases, which is much easier for neural methods

• Some promising approaches:

• Learning Entailment Graph (e.g., Hosseini et al., 2018, 2019)

• Vector-based Semantics (e.g., Wijnholds and Sadrzadeh, 2018)

Hosseini et al., Learning Typed Entailment Graphs with Global Soft Constraints, TACL 2018
Hosseini et al., Duality of Link Prediction and Entailment Graph Induction, ACL 2019
Wijnholds and Sadrzadeh, Evaluating Composition Models for Verb Elliptic Sentence Embeddings, NAACL 2019

Duality of Link Prediction and Entailment Graph Induction

Mohammad Javad Hosseini
?§

Shay B. Cohen
?

Mark Johnson
‡ and Mark Steedman

?

?University of Edinburgh §The Alan Turing Institute, UK ‡Macquarie University
javad.hosseini@ed.ac.uk, scohen@inf.ed.ac.uk
mark.johnson@mq.edu.au, steedman@inf.ed.ac.uk

Abstract

Link prediction and entailment graph induc-
tion are often treated as different problems.
In this paper, we show that these two prob-
lems are actually complementary. We train a
link prediction model on a knowledge graph
of assertions extracted from raw text. We
propose an entailment score that exploits the
new facts discovered by the link prediction
model, and then form entailment graphs be-
tween relations. We further use the learned en-
tailments to predict improved link prediction
scores. Our results show that the two tasks
can benefit from each other. The new entail-
ment score outperforms prior state-of-the-art
results on a standard entialment dataset and the
new link prediction scores show improvements
over the raw link prediction scores.

1 Introduction

Link prediction and entailment graph induction
are often treated as different problems. The for-
mer (Figure 1A) is used to infer missing relations
between entities in existing knowledge graphs
(Socher et al., 2013; Bordes et al., 2013; Riedel
et al., 2013). The latter (Figure 1B) constructs en-
tailment graphs with relations as nodes and entail-
ment rules as edges between them (Berant et al.,
2011, 2015; Hosseini et al., 2018) for the task of
answering questions from text. In this paper, we
show that these two problems are complementary
by demonstrating how link prediction can help
identify entailments and how discovered entail-
ments can help predict missing links.

Methods to learn entailment graphs (Berant
et al., 2011, 2015; Hosseini et al., 2018) process
large text corpora to find local entailment scores
between relations based on the Distributional In-
clusion Hypothesis which states that a word (rela-
tion) r entails another word (relation) q if and only
if in any context that r can be used, q can be used
in its place (Dagan et al., 1999; Geffet and Da-
gan, 2005; Kartsaklis and Sadrzadeh, 2016). They

E. Macron

be
 no

mina
ted

 fo
r p

res
ide

nc
y o

f
be

 el
ec

ted
 pr

es
ide

nt
of

France

ru
n f

or
 pr

es
ide

nc
y o

f

run for presidency of

be nominated for presidency of

be elected president of

M. Le Pen

(A)

(B)

Figure 1: A link prediction knowledge graph (A) and an
entailment graph (B) for entities of types politician,country.
The solid lines are discovered correctly, but the dashed ones
are missing. However, evidence from the link prediction
model can be used to add the missing entailment rule in the
entailment graph (B). Similarly, the entailment graph can be
used to add the missing link in the knowledge graph (A).

use types such as person, location and time, to
disambiguate polysemous relations (e.g., person
born in location and person born in time). Entail-
ment graphs are then formed by imposing global
constraints such as transitivity of the entailments
(Berant et al., 2011). The paraphrase1 and entail-
ment relations provide an interpretable resource
that can be used to answer questions, when the
answer is not explicitly stated in the text. For ex-
ample, while we can find on the web the assertion
Loch Fyne lies at the foot of mountains, we can-
not find a sentence directly stating that Loch Fyne
is located near mountains by querying Google as
of 4th March 2019. Knowledge of the entailment
relation between lies at the foot of and is located

1Relations that entail each other in both directions are re-
garded as paraphrases.

(⃗John ⊗ ⃗subj) ⊗ ⃗likes ⊗ (⃗Mary ⊗ ⃗obj)

