Combining Axiom Injection and Knowledge Base Completion for Efficient Natural Language Inference

- Masashi Yoshikawa, Koji Mineshima, Hiroshi Noji, Daisuke Bekki
 - Nara Institute of Science and Technology
 - ★ Ochanomizu University
 - Artificial Intelligence Research Center, AIST
 - AAAI-33 2019/1/31

AIST

Recognizing Textual Entailment a.k.a. Natural Language Inference **Premise(s)** Hypothesis

P1: Clients at the demonstration were all impressed by the system's performance.

P2: Smith was a client at the demonstration.

- lexical, logical, syntactic phenomena, etc.
- Elemental technology for improving other NLP tasks

{entailment, contradiction, unknown}

• A testbed to evaluate if a machine can reason as we do

- Question answering, reading comprehension, etc.

Approaches to RTE

- Machine learning (Rocktäschel et al., 2016, etc.)
 - e.g. Neural Networks

Approaches to RTE

- Machine learning (Rocktäschel et al., 2016, etc.)
 - e.g. Neural Networks
- Logic (Mineshima et al., 2015, Abzianidze 2017, etc)
 - Traditional pipeline systems
 - Theorem prover (e.g. Coq)

Approaches to RTE

- Machine learning (Rocktäschel et al., 2016, etc.)
 - e.g. Neural Networks
- Logic (Mineshima et al., 2015, Abzianidze 2017, etc)
 - Traditional pipeline systems
 - Theorem prover (e.g. Coq)
- Ours: logic-based, extended by ML! (Hybrid)

Promising approach to handling external knowledge within a logic-based system

- Promising approach to handling external knowledge within a logic-based system
- (However,) Practical issues:
 - We want to add more knowledge to increase the coverage of reasoning
 - We want the **KBs to be compact** for efficient inference & memory usage

- Promising approach to handling external knowledge within a logic-based system
- (However,) Practical issues:
 - We want to add more knowledge to increase the coverage of reasoning
 - We want the KBs to be compact for efficient inference & memory usage
- Do not want to run Coq again and again for real applications is
 - Ideally, the mechanism should be tightly integrated with the inference for effciency

- Promising approach to handling external knowledge within a logic-based system
- (However,) Practical issues:
 - We want to add more knowledge to increase the coverage of reasoning
 - We want the **KBs to be compact** for efficient inference & memory usage
- Do not want to run Coq again and again for real applications
 - Ideally, the mechanism should be tightly integrated with the inference for effciency
- We solve these issues by:

 - 2. Developing "abduction" Coq plugin

Replacing search on KBs by techniques of "Knowledge Base Completion" 6

- Knowledge Base Completion:
 - A task to complement missing relations
 - recent huge advancement

- Knowledge Base Completion:
 - A task to complement missing relations
 - recent huge advancement
- We propose an abduction mechanism based on KBC:
 - If (s, r, o) is missing, use it as axiom if $\phi(s, r, o) \geq \delta$ (threshold)

• Complex (Trouillon et al., 2016): $\phi(s, r, o) = \sigma(Re(\langle \mathbf{e}_s, \mathbf{e}_r, \mathbf{e}_o \rangle)), \forall \mathbf{e}_v \in \mathbb{C}^n$

1. Extending Abduction Mechanism with KBC KBC KBC models learn accurately One dot product (ComplEx) Knowledge from VerbOcean (Chklovski et al., 2004) are added for free **e**<u>hike</u> 0.9 **e**hypernym **e**walk

Coq Interactive Session

1 subgoal																			
H	•	ex	ist	ts	x	•	Ent	tit	-У,	ma	an :	x /	' \	(ex	ist	S	е	•	E
 ez	sis	sts	 X	•	Er	nti	Lty	, n	nan	 X	/\	- (e	xi	sts	е	•	Ev	en	t

vent, hike e /\ subj e x)

, walk $e / \ subj e x$)

- No need to rerun Coq in abduction
- Our method is applicable to other logic-based systems
 - e.g. Modern Type Theory (Bernandy and Chatzikyriakidis, 2017)

Experiments

- SICK RTE dataset (Marelli et al., 2014)
- Metrices: accuracy and processing time
- Complex is trained on logistic loss: $\sum t \log f(s, r, o) + (1 t) \log(1 f(s, r, o))$ $((s,r,o),t) \in \mathcal{D}$
- The training data is constructed using WordNet
 - synonym, antonym, hyponym, hypernyms, etc.
 - The trained Complex model achieves MRR of 77.68%

P: A flute is being played in a lovely way by a girl.

H: One woman is playing a flute.

syntactic

- logical lexical phenomena

Experimental Results on SICK

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

Experimental Results on SICK

Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

Experimental Results on SICK

Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

Experimental Results on SICK

Thank you!

- A KBC-based axiom injection for logic-based RTE systems
 - Efficient, scalable, and it provides latent knowledge
- **abduction** tactic for further faster reasoning
- Come to my poster (#1319) for other topics:
 - Adding other KB (VerbOcean) without losing efficiency
 - Evaluating learned latent knowledge in terms of RTE (LexSICK dataset)
- All the codes, dataset and slides are available:
 - https://masashi-y.github.io