
Combining Axiom Injection and
Knowledge Base Completion for

Efficient Natural Language Inference
Masashi Yoshikawa, Koji Mineshima, Hiroshi Noji, Daisuke Bekki

Nara Institute of Science and Technology
Ochanomizu University

Artificial Intelligence Research Center, AIST
AAAI-33 2019/1/31

• A testbed to evaluate if a machine can reason as we do
 - lexical, logical, syntactic phenomena, etc.
• Elemental technology for improving other NLP tasks
 - Question answering, reading comprehension, etc.

!2

Recognizing Textual Entailment
P1: Clients at the demonstration were all
 impressed by the system’s performance.

Premise(s) Hypothesis

H: Smith was impressed by the
 system’s performance.

 P2: Smith was a client at the demonstration.

{entailment, contradiction, unknown}

a.k.a. Natural Language Inference

Approaches to RTE
Published as a conference paper at ICLR 2016

x1

c1

h1

x2

c2

h2

x3

c3

h3

x4

c4

h4

x5

c5

h5

x6

c6

h6

x7

c7

h7

x8

c8

h8

x9

c9

h9

A wedding party taking pictures :: Someone got married

Premise Hypothesis

(A) Conditional

Encoding

(C) Word-by-word

Attention

(B) Attention

Figure 1: Recognizing textual entailment using (A) conditional encoding via two LSTMs, one over
the premise and one over the hypothesis conditioned on the representation of the premise (c5), (B)
attention only based on the last output vector (h9) or (C) word-by-word attention based on all output
vectors of the hypothesis (h7, h8 and h9).

state is initialized with the last cell state of the previous LSTM (c5 in the example), i.e. it is condi-
tioned on the representation that the first LSTM built for the premise (A). We use word2vec vectors
(Mikolov et al., 2013) as word representations, which we do not optimize during training. Out-of-
vocabulary words in the training set are randomly initialized by sampling values uniformly from
(�0.05, 0.05) and optimized during training.1 Out-of-vocabulary words encountered at inference
time on the validation and test corpus are set to fixed random vectors. By not tuning representations
of words for which we have word2vec vectors, we ensure that at inference time their representation
stays close to unseen similar words for which we have word2vec embeddings. We use a linear layer
to project word vectors to the dimensionality of the hidden size of the LSTM, yielding input vectors
xi. Finally, for classification we use a softmax layer over the output of a non-linear projection of
the last output vector (h9 in the example) into the target space of the three classes (ENTAILMENT,
NEUTRAL or CONTRADICTION), and train using the cross-entropy loss.

2.3 ATTENTION

Attentive neural networks have recently demonstrated success in a wide range of tasks ranging from
handwriting synthesis (Graves, 2013), digit classification (Mnih et al., 2014), machine translation
(Bahdanau et al., 2015), image captioning (Xu et al., 2015), speech recognition (Chorowski et al.,
2015) and sentence summarization (Rush et al., 2015), to geometric reasoning (Vinyals et al., 2015).
The idea is to allow the model to attend over past output vectors (see Figure 1 B), thereby mitigating
the LSTM’s cell state bottleneck. More precisely, an LSTM with attention for RTE does not need to
capture the whole semantics of the premise in its cell state. Instead, it is sufficient to output vectors
while reading the premise and accumulating a representation in the cell state that informs the second
LSTM which of the output vectors of the premise it needs to attend over to determine the RTE class.

Let Y 2 Rk⇥L be a matrix consisting of output vectors [h1 · · · hL] that the first LSTM produced
when reading the L words of the premise, where k is a hyperparameter denoting the size of em-
beddings and hidden layers. Furthermore, let eL 2 RL be a vector of 1s and hN be the last output
vector after the premise and hypothesis were processed by the two LSTMs respectively. The atten-
tion mechanism will produce a vector ↵ of attention weights and a weighted representation r of the
premise via

M = tanh(W
y
Y +W

h
hN ⌦ eL) M 2 Rk⇥L (7)

↵ = softmax(wT
M) ↵ 2 RL (8)

r = Y↵T
r 2 Rk (9)

1We found 12.1k words in SNLI for which we could not obtain word2vec embeddings, resulting in 3.65M
tunable parameters.

3

Rocktäschel et al., 2016

• Machine learning (Rocktäschel et al., 2016, etc.)

• e.g. Neural Networks

!3

Approaches to RTE
Published as a conference paper at ICLR 2016

x1

c1

h1

x2

c2

h2

x3

c3

h3

x4

c4

h4

x5

c5

h5

x6

c6

h6

x7

c7

h7

x8

c8

h8

x9

c9

h9

A wedding party taking pictures :: Someone got married

Premise Hypothesis

(A) Conditional

Encoding

(C) Word-by-word

Attention

(B) Attention

Figure 1: Recognizing textual entailment using (A) conditional encoding via two LSTMs, one over
the premise and one over the hypothesis conditioned on the representation of the premise (c5), (B)
attention only based on the last output vector (h9) or (C) word-by-word attention based on all output
vectors of the hypothesis (h7, h8 and h9).

state is initialized with the last cell state of the previous LSTM (c5 in the example), i.e. it is condi-
tioned on the representation that the first LSTM built for the premise (A). We use word2vec vectors
(Mikolov et al., 2013) as word representations, which we do not optimize during training. Out-of-
vocabulary words in the training set are randomly initialized by sampling values uniformly from
(�0.05, 0.05) and optimized during training.1 Out-of-vocabulary words encountered at inference
time on the validation and test corpus are set to fixed random vectors. By not tuning representations
of words for which we have word2vec vectors, we ensure that at inference time their representation
stays close to unseen similar words for which we have word2vec embeddings. We use a linear layer
to project word vectors to the dimensionality of the hidden size of the LSTM, yielding input vectors
xi. Finally, for classification we use a softmax layer over the output of a non-linear projection of
the last output vector (h9 in the example) into the target space of the three classes (ENTAILMENT,
NEUTRAL or CONTRADICTION), and train using the cross-entropy loss.

2.3 ATTENTION

Attentive neural networks have recently demonstrated success in a wide range of tasks ranging from
handwriting synthesis (Graves, 2013), digit classification (Mnih et al., 2014), machine translation
(Bahdanau et al., 2015), image captioning (Xu et al., 2015), speech recognition (Chorowski et al.,
2015) and sentence summarization (Rush et al., 2015), to geometric reasoning (Vinyals et al., 2015).
The idea is to allow the model to attend over past output vectors (see Figure 1 B), thereby mitigating
the LSTM’s cell state bottleneck. More precisely, an LSTM with attention for RTE does not need to
capture the whole semantics of the premise in its cell state. Instead, it is sufficient to output vectors
while reading the premise and accumulating a representation in the cell state that informs the second
LSTM which of the output vectors of the premise it needs to attend over to determine the RTE class.

Let Y 2 Rk⇥L be a matrix consisting of output vectors [h1 · · · hL] that the first LSTM produced
when reading the L words of the premise, where k is a hyperparameter denoting the size of em-
beddings and hidden layers. Furthermore, let eL 2 RL be a vector of 1s and hN be the last output
vector after the premise and hypothesis were processed by the two LSTMs respectively. The atten-
tion mechanism will produce a vector ↵ of attention weights and a weighted representation r of the
premise via

M = tanh(W
y
Y +W

h
hN ⌦ eL) M 2 Rk⇥L (7)

↵ = softmax(wT
M) ↵ 2 RL (8)

r = Y↵T
r 2 Rk (9)

1We found 12.1k words in SNLI for which we could not obtain word2vec embeddings, resulting in 3.65M
tunable parameters.

3

Rocktäschel et al., 2016

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

T: A man hikes. H: A man walks.

Mineshima et al., 2015

• Machine learning (Rocktäschel et al., 2016, etc.)

• e.g. Neural Networks

• Logic (Mineshima et al., 2015, Abzianidze 2017, etc)

• Traditional pipeline systems

• Theorem prover (e.g. Coq)

!3

Approaches to RTE
Published as a conference paper at ICLR 2016

x1

c1

h1

x2

c2

h2

x3

c3

h3

x4

c4

h4

x5

c5

h5

x6

c6

h6

x7

c7

h7

x8

c8

h8

x9

c9

h9

A wedding party taking pictures :: Someone got married

Premise Hypothesis

(A) Conditional

Encoding

(C) Word-by-word

Attention

(B) Attention

Figure 1: Recognizing textual entailment using (A) conditional encoding via two LSTMs, one over
the premise and one over the hypothesis conditioned on the representation of the premise (c5), (B)
attention only based on the last output vector (h9) or (C) word-by-word attention based on all output
vectors of the hypothesis (h7, h8 and h9).

state is initialized with the last cell state of the previous LSTM (c5 in the example), i.e. it is condi-
tioned on the representation that the first LSTM built for the premise (A). We use word2vec vectors
(Mikolov et al., 2013) as word representations, which we do not optimize during training. Out-of-
vocabulary words in the training set are randomly initialized by sampling values uniformly from
(�0.05, 0.05) and optimized during training.1 Out-of-vocabulary words encountered at inference
time on the validation and test corpus are set to fixed random vectors. By not tuning representations
of words for which we have word2vec vectors, we ensure that at inference time their representation
stays close to unseen similar words for which we have word2vec embeddings. We use a linear layer
to project word vectors to the dimensionality of the hidden size of the LSTM, yielding input vectors
xi. Finally, for classification we use a softmax layer over the output of a non-linear projection of
the last output vector (h9 in the example) into the target space of the three classes (ENTAILMENT,
NEUTRAL or CONTRADICTION), and train using the cross-entropy loss.

2.3 ATTENTION

Attentive neural networks have recently demonstrated success in a wide range of tasks ranging from
handwriting synthesis (Graves, 2013), digit classification (Mnih et al., 2014), machine translation
(Bahdanau et al., 2015), image captioning (Xu et al., 2015), speech recognition (Chorowski et al.,
2015) and sentence summarization (Rush et al., 2015), to geometric reasoning (Vinyals et al., 2015).
The idea is to allow the model to attend over past output vectors (see Figure 1 B), thereby mitigating
the LSTM’s cell state bottleneck. More precisely, an LSTM with attention for RTE does not need to
capture the whole semantics of the premise in its cell state. Instead, it is sufficient to output vectors
while reading the premise and accumulating a representation in the cell state that informs the second
LSTM which of the output vectors of the premise it needs to attend over to determine the RTE class.

Let Y 2 Rk⇥L be a matrix consisting of output vectors [h1 · · · hL] that the first LSTM produced
when reading the L words of the premise, where k is a hyperparameter denoting the size of em-
beddings and hidden layers. Furthermore, let eL 2 RL be a vector of 1s and hN be the last output
vector after the premise and hypothesis were processed by the two LSTMs respectively. The atten-
tion mechanism will produce a vector ↵ of attention weights and a weighted representation r of the
premise via

M = tanh(W
y
Y +W

h
hN ⌦ eL) M 2 Rk⇥L (7)

↵ = softmax(wT
M) ↵ 2 RL (8)

r = Y↵T
r 2 Rk (9)

1We found 12.1k words in SNLI for which we could not obtain word2vec embeddings, resulting in 3.65M
tunable parameters.

3

Rocktäschel et al., 2016

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

T: A man hikes. H: A man walks.

Mineshima et al., 2015

• Machine learning (Rocktäschel et al., 2016, etc.)

• e.g. Neural Networks

• Logic (Mineshima et al., 2015, Abzianidze 2017, etc)

• Traditional pipeline systems

• Theorem prover (e.g. Coq)

• Ours: logic-based, extended by ML! (Hybrid)

!3

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

!4

ccg2lambda (Mineshima et al., 2015)

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

!4

👍 Unsupervised
👍 Captures linguistic phenomena
 - 83.6 % accuracy in SICK

ccg2lambda (Mineshima et al., 2015)

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

!4

👍 Unsupervised
👍 Captures linguistic phenomena
 - 83.6 % accuracy in SICK

 How to handle external knowledge?
 e.g.
 - Use WordNet as axioms blows up
the search space of theorem proving!

🤔
∀x . hike(x) → walk(x)

ccg2lambda (Mineshima et al., 2015)

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

!5

"Abduction" Mechanism (Martínez-Gómez et al., 2017)

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq
theorem
prover

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.
Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq
theorem
prover

hike
walk

hypernym

hypernym
go

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

P: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

!5

"Abduction" Mechanism (Martínez-Gómez et al., 2017)

More steps when the 1st theorem proving is unsuccessful
 1. Search KBs (e.g. WordNet) for useful lexical relations
 2. Rerun Coq with additional axioms

• Promising approach to handling external knowledge within a logic-based system

!6

"Abduction" Mechanism (Martínez-Gómez et al., 2017)

• Promising approach to handling external knowledge within a logic-based system

• (However,) Practical issues:

• We want to add more knowledge to increase the coverage of reasoning

• We want the KBs to be compact for efficient inference & memory usage

!6

"Abduction" Mechanism (Martínez-Gómez et al., 2017)

• Promising approach to handling external knowledge within a logic-based system

• (However,) Practical issues:

• We want to add more knowledge to increase the coverage of reasoning

• We want the KBs to be compact for efficient inference & memory usage

• Do not want to run Coq again and again for real applications 😣

• Ideally, the mechanism should be tightly integrated with the inference for effciency

!6

"Abduction" Mechanism (Martínez-Gómez et al., 2017)

• Promising approach to handling external knowledge within a logic-based system

• (However,) Practical issues:

• We want to add more knowledge to increase the coverage of reasoning

• We want the KBs to be compact for efficient inference & memory usage

• Do not want to run Coq again and again for real applications 😣

• Ideally, the mechanism should be tightly integrated with the inference for effciency

• We solve these issues by:
1. Replacing search on KBs by techniques of "Knowledge Base Completion"

2. Developing "abduction" Coq plugin

👉

!6

"Abduction" Mechanism (Martínez-Gómez et al., 2017)

1. Extending Abduction Mechanism with KBC
hike

walk

ride

hypernym

hyponym
antonym

go

hypernym

antonym

!7

1. Extending Abduction Mechanism with KBC
• Knowledge Base Completion:
• A task to complement missing relations

• recent huge advancement

hike
walk

ride

hypernym

hyponym
antonym

go

hypernym

antonym

!7

1. Extending Abduction Mechanism with KBC
• Knowledge Base Completion:
• A task to complement missing relations

• recent huge advancement

• We propose an abduction mechanism based on KBC:

• If is missing, use it as axiom if (threshold)

• ComplEx (Trouillon et al., 2016): ϕ(s, r, o) = σ(Re(⟨es, er, eo⟩)), ∀e𝚟 ∈ ℂn

hike
walk

ride

hypernym

hyponym
antonym

go

hypernym

antonym

hike
walk

hypernym

hypernym
go φ

ehike

ewalk
ehypernym 0.9

!7

ϕ(s, r, o) ≥ δ(s, r, o)

1. Extending Abduction Mechanism with KBC

hike
walk

hypernym

hypernym
go φ

ehike

ewalk
ehypernym 0.9

Search on KB KBC

Latent Knowledge Hand-crafted rules
(e.g. transitive closure of hypernym)

KBC models learn
accurately

Efficiency Multi-hop reasoning
takes time

One dot product
(ComplEx)

Scalability Adding more knowledge
harms the search time

Knowledge from VerbOcean
(Chklovski et al., 2004) are

added for free

!8

1. Extending Abduction Mechanism with KBC

hike
walk

hypernym

hypernym
go φ

ehike

ewalk
ehypernym 0.9

Search on KB KBC

Latent Knowledge Hand-crafted rules
(e.g. transitive closure of hypernym)

KBC models learn
accurately

Efficiency Multi-hop reasoning
takes time

One dot product
(ComplEx)

Scalability Adding more knowledge
harms the search time

Knowledge from VerbOcean
(Chklovski et al., 2004) are

added for free

!8

1. Extending Abduction Mechanism with KBC

hike
walk

hypernym

hypernym
go φ

ehike

ewalk
ehypernym 0.9

Search on KB KBC

Latent Knowledge Hand-crafted rules
(e.g. transitive closure of hypernym)

KBC models learn
accurately

Efficiency Multi-hop reasoning
takes time

One dot product
(ComplEx)

Scalability Adding more knowledge
harms the search time

Knowledge from VerbOcean
(Chklovski et al., 2004) are

added for free

!8

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

!9

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

!9

Lexical gap!

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

!9

Lexical gap!

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

!9

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

!9

Construct a list of predicate
pairs from context and goal

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

!9

Construct a list of predicate
pairs from context and goal

Evaluate all the predicate
pairs using ComplEx

Filter them by score

φ
ehike

ewalk
ehypernym 0.9

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

!9

Construct a list of predicate
pairs from context and goal

Evaluate all the predicate
pairs using ComplEx

Filter them by score

φ
ehike

ewalk
ehypernym 0.9

Add them as axioms
(hike, hypernym, walk)

∀x . hike(x) → walk(x)

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

1 subgoal

 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

1 subgoal
 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 NLax1 : forall x : Event, hike x -> walk x
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

Coq Interactive Session

2. Faster Reasoning with "abduction" Coq plugin

!9

Construct a list of predicate
pairs from context and goal

Evaluate all the predicate
pairs using ComplEx

Filter them by score

φ
ehike

ewalk
ehypernym 0.9

Add them as axioms
(hike, hypernym, walk)

∀x . hike(x) → walk(x)

Lexical gap!

(man, walk)
 (man, hike)
 (hike, walk)

t < abduction.

Syntactic Parsing

Semantic Parsing

Theorem Proving

{ yes, no, unknown }

CCG Derivations

Logical Formulas

Premise (P)
& Hypothesis (H)

A man hikes
NP/N N S\NP

NP
S

A man walks
NP/N N S\NP

NP
S

T: A man hikes. H: A man walks.

{ yes, no, unknown }

Theorem Proving

Search on KBs

New Axioms

result: unknown

result: yes

Coq
theorem
prover

Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq < Axiom ax1: forall x: Event, hike e -> walk e.
Coq < Theorem t1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).
Coq < Proof. ccg2lambda. Qed.

Coq

result: yes
φ

ehike
ewalk

ehypernym 0.9

+abduction

!10

Summary so far...

👍 Efficient and scalable abduction mechanism
👍 No need to rerun Coq in abduction
• Our method is applicable to other logic-based systems
• e.g. Modern Type Theory (Bernandy and Chatzikyriakidis, 2017)

L =
X

((s,r,o),t)2D

t log f(s, r, o) + (1� t) log(1� f(s, r, o))

Experiments
•SICK RTE dataset (Marelli et al., 2014)

•Metrices: accuracy and processing time

• ComplEx is trained on logistic loss:

• The training data is constructed using WordNet

• synonym, antonym, hyponym, hypernyms, etc.

• The trained ComplEx model achieves MRR of 77.68%

!11

H: One woman is playing a flute.

P: A flute is being played in a lovely way by a girl.

lexical
phenomena

syntactic

logical
entailment

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

• RTE performance (accuracy)

Experimental Results on SICK

77.0
79.3
81.7
84.0

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

83.55%83.55%

77.3%

82%

!12

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

• RTE performance (accuracy)

Experimental Results on SICK

77.0
79.3
81.7
84.0

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

83.55%83.55%

77.3%

82%

Achieves the same accuracy,
improving significantly
from "no knowledge" case

!12

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

• RTE performance (accuracy)

Experimental Results on SICK

77.0
79.3
81.7
84.0

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

83.55%83.55%

77.3%

82%

0.0
3.3
6.7

10.0

no knowledge Search on KB KBC (Ours)

4.03
9.15

3.79

• Processing speed (second per a problem)
Achieves the same accuracy,
improving significantly
from "no knowledge" case

!12

• Baselines: Search on KB (Martínez-Gómez et al., 2017), NN-based (Nie et al., 2017)

• RTE performance (accuracy)

Experimental Results on SICK

77.0
79.3
81.7
84.0

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

83.55%83.55%

77.3%

82%

0.0
3.3
6.7

10.0

no knowledge Search on KB KBC (Ours)

4.03
9.15

3.79

• Processing speed (second per a problem)
Achieves the same accuracy,
improving significantly
from "no knowledge" case

Our method halves the time
to process an RTE problem!!12

Thank you!
• A KBC-based axiom injection for logic-based RTE systems

• Efficient, scalable, and it provides latent knowledge

•abduction tactic for further faster reasoning
• Come to my poster (#1319) for other topics:

• Adding other KB (VerbOcean) without losing efficiency

• Evaluating learned latent knowledge in terms of RTE (LexSICK dataset)

• All the codes, dataset and slides are available:
• https://masashi-y.github.io

!13

https://masashi-y.github.io

