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Recognizing lTextual Entallment

a.k.a. Natural Language Inference

Premise(s) Hypothesis
P1: Clients at the demonstration were all
impressed by the system’s performance. H: Smith was impressed by the

system’s performance.

P2: Smith was a client at the demonstration.

— {entailment, contradiction, unknown} |

. A testbed to evaluate if a machine can reason as we do
- lexical, logical, syntactic phenomena, etc.
. Elemental technology tor improving other NLP tasks

- Question answering, reading comprehension, etc.
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Coq < Theorem tl:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x).

Coq < Proof. ccg2lambda. OQed.

result: unknown

Coqg
theorem
prover
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AdeCthn I\/Iechanlsm (Martinez-Gémez et al., 2017)
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New Axioms
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Coq < Theorem tl:
(exists x : Entity, man x /\

(exists e : Event, hike e /\ subj e x)) ->

PRINCETON UNIVERSITY ‘ ‘ ,
\§
= WordNet :
rommmmmmm s S m oo oo oo A lexical database for English
|
| |
|

_______________________________________
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exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x). COq
Coq < Proof. ccg2lambda. Qed. theorem
rover
result: unknown P
hl— hypernym
AR T o walk :
\ 20, C > Ve.hike(e) — walk(e)
go U« x
&”. hypernym M
Coq < Axiom axl: forall x: Event, hike e -> walk e.
Coq < Theorem tl1:
(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) -> Coq
exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e Xx).
Coq < Proof. ccg2lambda. Qed. theorem
- prover

result: ves

More steps when the 1st theorem proving is unsuccesstul
1. Search KBs (e.g. WordNet) for useful lexical relations
2. Rerun Coqg with additional axioms
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. Promising approach to handling external knowledge within a logic-based system

. (However,) Practical issues:
. We want to add more knowledge to increase the coverage of reasoning

- We want the KBs to be compact for efficient inference & memory usage

. Do not want to run Coq again and again for real applications &

. |deally, the mechanism should be tightly integrated with the inference for effciency

~We solve these issues by:
1. Replacing search on KBs by techniques of "Knowledge Base Completion”

2. Developing "abduction" Coqg plugin



1. Extending Abduction Mechanism with KBC
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. If (s,7,0) is missing, use it as axiom if @(s,7,0) > O (threshold)
. ComplEx (Trouillon et al., 2016): ¢(s,r,0) = o(Re({e e, e, ))),Ve & C"
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Extending Abduction Mechanism with KBC

Search on KB KBC

Hand-crafted rules KBC models learn
(e.g. transitive closure of hypernym) accurately

Latent Knowledge
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Extending Abduction Mechanism with KBC

Search on KB KBC
Hand-crafted rules KBC models learn
Latent Knowledge -
(e.g. transitive closure of hypernym) accurately
Efficiency Multi-hop re.asoning One dot product
takes time (ComplEx)

Adding more knowledge Knowledge from VerbOcean

Scalabllity (Chklovski et al., 2004) are
added for free

harms the search time

Chike |

Chypernym | —

Cwalk |



2. Faster Reasoning with "abduction” Coqg plugin

Coq Interactive Session

subgoal

H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)

exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)
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Construct a list of predicate
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Coq Interactive Sessiq’
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Semantic Parsing

__________ .____________I

" Logical Formulas :

= Efficient and scalable abduction mechanism

Summary so far...

< _ < _

Coq < Theorem tl:

L.

e.hike(e) A subj(e,x)
man(x) A Je.walk(e) A subj(e,x)
< _

(exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x). (:
Cogq < Proof. ccg2lambda. Qed. OQ

i gy +abduction
result: yes €hike []-

Chypernym [} . / |

.= No need to rerun Coqg Iin abduction

. Our method Is applicable to other logic-based systems
. e.9. Modern Type Theory (Bernandy and Chatzikyriakidis, 2017)
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Experiments

. SICK RTE dataset (Marelli et al., 2014)

. Metrices: accuracy and processing time

. ComplEx is trained on logistic loss: »  tlog f(s,r,0) + (1 —t)log(1 — f(s,r,0))
. [he training data is constructed (L(Jsgi,;)gi/l\)/ordNet

. Synonym, antonym, hyponym, hypernyms, etc.

. The trained ComplEx model achieves MRR of 77.68%

P: A flute 1s being played 1n a lovely way by a girl.

logical lexical

H: 1s playing a flute. ohenomena ‘,

11



Experimental Results on SICK

- RTE performance (accuracy)
84.0 33.55% 33.55%
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81.7
77.0 — e I

(Nie et al., 2017) no knowledge Search on KB Ours (KBC)

. Baselines: Search on KB (Martinez-Gomez et al., 2017), NN-based (Nie et al., 201 7)
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Experimental Results on SICK

- RTE performance (accuracy)
840 33.55% 83.55%

| 82%
81.7
77.0

(Nie et al.,, 2017) no knowledqe Search on KB

Achleves the same accuracy, §

improving significantly

. Processing speed (second per a problem) ]
§ from "no knowledge” case §

10.0 9.15
4.03

no knowledge Search on KB Ours

. Baselines: Search on KB (Martinez-Gémez et al., 2017), NNf Our method halves the time i

. ! to process an RTE problem! §



Thank youl!

. A KBC-based axiom injection for logic-based RTE systems

. Efficient, scalable, and it provides latent knowledge

. abduction tactic for further faster reasoning

. Come to my poster (#1319) for other topics:

. Adding other KB (VerbOcean) without losing efficiency

. Evaluating learned latent knowledge in terms of RTE (LexSICK dataset)
. All the codes, dataset and slides are available:

https.//masashi-y.github.io
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